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Abstract

The advent of revolutionary new multisite silicon probes equips researchers with tools to
record simultaneously from an unprecedented number of neurons, opening new avenues for the
description of neural circuits. However, numerous molecular, morphological, functional and con-
nectional characteristics distinguish neurons in the brain into different cell types, and reliable
identification of such cell types in extracellular recordings is essential to determine their con-
tributions to neural circuit computations. This is difficult in any brain area, but particularly
challenging in the cerebellar cortex due to the high density of neurons, their high firing rates,
and the elaborately folded cytoarchitecture. Previous studies tried to solve this problem using
supervised learning, but lacked rigorousness in their machine learning pipelines and used datasets
coming from anaesthetised animals. Here we tackle the problem using a novel dataset coming
from high-density Neuropixels recordings of the cerebellar cortex in awake, freely moving mice.
Due to the complexity of the experimental protocol for data acquisition, only a small amount of
the data is labelled. As a consequence, for the first time in this domain, we adopt a range of
modern deep semi-supervised methods to approach the task, making the most efficient possible
use of ground-truth information. Results show how our models are able to surpass in accuracy
both human experts and a baseline constructed with engineered features from the electrophysi-
ology literature, in some cases using just only a fraction of the total labels available. We further
propose concrete steps to bring our model architectures into deployment, to yield a tool that can
be reliably incorporated into the analysis pipelines of electrophysiology laboratories across the
world. Our broader hope is to inspire researchers in biology to make a more resource-aware use
of data, especially when coming from costly and time-consuming experiments.
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Preface

If you try to please all, you please none.

Aesop

As the title page recites, “this report is submitted as part requirement for the MSc Machine
Learning at UCL”. However, given the subject of the matter and my academic background,
a substantial amount of this writing will be related to Neuroscience. I recognize that, while
I tried to be as concise as possible and at the same time include all necessary relevant facts,
the quantity and content of background information could at times seem either excessive or
incomplete, depending on which field the reader comes from. Nonetheless, it is my hope that the
following work will be both accessible and informative to neuroscientists and computer scientists
alike, as I have kept both audiences in mind from the beginning.
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Chapter 1

Introduction

It was only less than three centuries ago when scientists started to speculate on the electri-
cal essence of neurophysiology [1], and the first precise and analytical characterisation of the
main electrical signature of neurons, the action potential, is merely less than a century old [2].
Since then, systems neuroscience and electrophysiology together have made immense progress in
unveiling the fundamental characteristics of communication in neural populations.

A large amount of this progress can be attributed to the constant development of new record-
ing techniques, which, resembling Moore’s law, have been doubling the amount of simultaneously
recorded neurons approximately every 7 years [3]. However, as neuroscience advances and meth-
ods to record neural signals from alive, behaving animals evolve and improve, the data generated
by experiments inevitably grows in both magnitude and complexity. As a consequence, prac-
tically the totality of data produced with contemporary probes and multi-electrode arrays [4]
would be uninterpretable without companion software to aid experimenters.

Take as an example Neuropixels [5, 6], a novel class of high-density silicon probes capable of
recording from hundreds of neurons simultaneously. To be understandable, multi-channel neural
activity thus recorded needs to be processed with specialised spike sorting software (see section
2.2.1; [7]), which attempts to isolate the activity (or spikes) of single neurons in a sea of noisy,
high-dimensional data.

While isolating the activity of single neurons in population recordings is an extremely im-
portant - and difficult - first step in the decoding of neural computation, there is still a crucial
missing piece of information that systems neuroscientists need to reach a definitive description
of neuronal circuits: which cell types they are recording from. Working on this missing link will
be the focus of our work.
But what are neuronal cell types, and why are they important for our understanding of the
brain?

1.1 Problem statement and motivation

Unlike artificial neurons in deep neural networks, neurons in the brain come in an astounding va-
riety of cell types, each with their biophysical and morphological characteristics which influence
their connectivity and information processing properties within neural circuits [8]. Therefore,
beyond the already important yet easier to infer distinction between excitatory and inhibitory
neurons, knowing the exact cell type of a neuron is of exceptional value in decoding its contri-
butions to neuronal computation.

Unfortunately, there are several reasons why retrieving the cell type of a neuron from electro-
physiological recordings in vivo is non-trivial, especially when using contemporary silicon probes
such as Neuropixels [5, 6].

First, data from high-density probes is inherently noisy and high-dimensional, generally need-
ing meticulous consideration in any analytical scenario. The reason for this is that any neuron
is recorded over multiple channels in space, but every channel will likely receive activity from
more than one neuron. Clustering the activity of different neurons from extracellular recordings
has been a challenge since the dawn of the field [9, 10], but here we will effectively take this step
as solved, and only as a source of noise in our modelling.
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Secondly, and most importantly for our task, getting ground-truth data about cell identities
when recording them with extracellular probes involves complicated and time-consuming exper-
imental manipulations, especially when performed on live, freely-behaving animals. Even once
performed, such experiments have a very low yield of labelled data compared to unlabelled data,
calling for the most resourceful possible use of ground-truth information.

Finally, within each cell type, there is not only a significant deal of biological variability influ-
encing the recorded responses, but also an unbounded number of relative arrangements between
the silicon probe and the recorded cell, ultimately also affecting variance in the data.
To do well, machine learning methods need to resolve both types of variability.

Previous work in the field of cerebellar cell type classification has focused heavily on fully
supervised, feature engineering approaches [11–13], completely disregarding the possibility of us-
ing cheaper, and more abundant, unlabeled data to assist the classification process. Moreover,
placing themselves in line with a strong tradition of computational modelling and feature ex-
traction from neural activity [14–16], previous studies never completely rely on machine learning
methods for feature learning.

Although still appreciative and much indebted to past efforts, here we seek to move past
feature engineering approaches for neuronal cell type classification by leveraging achievements
in the the rapidly moving subfield of machine learning known as semi-supervised Learning (SSL;
[17]). This has no precedent in the cell type classification literature and will allow us to provide
new avenues for efficient data use in the task, in alignment with the recent growth of SSL
applications in Neuroscience [18–22].

1.2 Aims and research directions

In this study, we will have at our disposal an invaluable dataset of Neuropixels recordings of
experimentally identified ground-truth cell types in the cerebellar cortex (n = 77), along with
the activity of many more unlabelled neurons (n = 877), acquired in the Häusser lab over the
past 3 years. Importantly, all data comes from live, freely moving animals, an important change
of direction from previous research that had limited applicability due to constrained recording
conditions.

The current investigation aims to use the dataset to construct a robust machine learning
pipeline for semi-supervised cell-type classification in the cerebellum which can be aligned with
researchers’ needs and readily be adopted by laboratories working with Neuropixels. To accom-
plish this, two competing yet complementary approaches were followed.

On the one hand, to satisfy a need for interpretable results that reflect the neurons’ bio-
logical characteristics, we sought to improve existing tree-based methods that work with engi-
neered features. Specifically, the aim behind this first line of research was to unify existing,
well-understood engineered features for cell type classification with unsupervised representation
learning techniques that could make the most of unlabeled data while still working with relatively
interpretable tree-based classifiers.

On the other hand, we sought to abandon a feature engineering approach by adopting con-
temporary Deep Semi-Supervised methods. These would sacrifice some interpretability at the
supposed advantage of improved accuracy, better use of unlabeled data, and efficient compatibil-
ity with data augmentation strategies. Applied in conjunction with Bayesian deep learning tools
for better uncertainty calibration, deep semi-supervised methods can accurately inform experi-
menters’ decision-making while leveraging the latest developments in Machine Learning research.
Moreover, in this case, engineered features could still be used retrospectively on classifiers’ results
to regain explainability.

1.3 Summary of contributions

Following our two central research aims, the main contributions of the present work toward cell
type classification in the cerebellum can be summarised as follows:
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1. We let expert electrophysiologists predict the labels of all ground-truth instances in our
dataset, recording their performance through a custom web application 1 and setting an
expert baseline for the machine learning models.

2. We revised and generalised the pipeline to compute engineered features from Neuropixels
data, contributing to the open-source electrophysiology Python package npyx [23]. Ad-
ditionally, we developed a dashboard to visualise the outcomes of the feature extraction
process and organise in the same place all sources of information going into the creation of
the dataset.2

3. A rigorous and reliable modelling pipeline was introduced for the classification task, includ-
ing hyperparameter optimisation with Bayesian optimisation [24, 25], model selection with
stratified cross-validation and performance reporting with leave one out cross-validation.

4. We created a custom, expert-derived and biologically plausible set of data augmentations
for neural data, which we used when building all of our deep learning models.

5. For the first time in this domain, we applied representation learning methods to neural
responses, demonstrating how meaningful data manifolds that capture essential variability
in the data can be learned by variational autoencoders.

6. Again for the first time, we applied deep semi-supervised methods to the cerebellar cell-
types classification problem, showing how they can rival the performance of competitor
models with vastly more efficient use of labelled data.3

1.4 Thesis outline

The contributions just outlined will be presented following a traditional exposition.
First, we will go into the details of the prerequisite knowledge needed to fully understand the

directions taken in further chapters.
Following that, we will briefly offer a critical evaluation of past work in the field of cerebellar

cell type classification, building up to our own contributions.
In describing our work, we will compare and contrast the performances of different models,

deriving some important conclusions about the dataset from the inspection of the most common
mistakes.

Finally, future objectives are examined, with particular attention to the specific steps that
need to be taken for our models to be adopted by the wider research community.

1https://files.fededagos.me/guess/
2https://files.fededagos.me/features/
3We release all code and data for the experiments at https://github.com/fededagos/

celltypes-classification
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Chapter 2

Theoretical background

This chapter discusses the fundamental prerequisites needed to understand the cell types classi-
fication problem and the rationale behind the proposed solutions.

2.1 The cerebellum

Figure 2.1: Organisation of the cerebellar cortex. A. Schematic of a vertical section of a
single cerebellar folium. Note how different cell types are found in separate layers. B. Diagram
illustrating convergent inputs onto the Purkinje cell from parallel and climbing fibres and from
local circuit neurons. Recurrent loops involve Golgi cells within the cerebellar cortex and the
inferior olive outside the cerebellum. Excitation and inhibition in the microcircuit are indicated
by + and − signs. Figures and captions adapted from [26, 27].

2.1.1 Structure and function of the cerebellum

The cerebellum is a structure that lies underneath the occipital and temporal lobes of the cerebral
cortex in the rear of the brain. Over 50 % of the central nervous system’s total neurons are
found in the cerebellum, even though it makes up just about 10 % of the brain’s overall volume
[26]. Historically thought of as a structure exclusively dedicated to motor control due to the
pronounced motor symptoms of cerebellar damage [26, 27], the cerebellum is being recently
appreciated for its roles in cognition [28, 29], reward processing [30, 31], and autism [32], among
others.

The cerebellum can be divided into different areas according to either anatomical or functional
criteria, with each region receiving projections and projecting back to different areas of the central
nervous system. In spite of this, all areas share similarities at the cellular level, and, most
interestingly, in how the microcircuits are organised. As a consequence, it is widely believed
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that different regions of the cerebellum perform essentially similar computations on a variety of
different inputs.

The current consensus is that internal models of the body are stored in the arrays of parallel
fibre-Purkinje cell synapses in the cerebellar cortex, tuned by the interplay between climbing
and parallel fibre firing which engages long-term plasticity mechanisms. These internal models,
continuously updated throughout life, use sensory and motor information available in the present
(e.g. muscle tension, perceived obstacles) to predict the sensory consequences of motion in the
immediate future. It is believed that different cerebellar modules might form similar predictions
in different spaces, some directly related to our senses (3D space) and others more abstract (e.g.
predicting upcoming social interactions given current facial expressions). The concept of internal
models is not exclusive to the cerebellum, but the specificity of cerebellar computations is the
time scale at which they operate: on the order of milliseconds [26, 27].

2.1.2 Cell types and cerebellar microcircuitry supporting cerebellar
function

The cerebellum is composed of two structures: the cerebellar nuclei, the output stage of the cere-
bellum, and the cerebellar cortex foliated around the nuclei. The cerebellar cortex projects onto
the nuclei via the Purkinje cells (PkCs), its exclusive source of output, and features a layered
organisation.

The granular layer is the input layer of the cerebellar cortex. It contains a vast number
of small, densely packed excitatory granule cells (GrC), accounting for most of the cells in the
cerebellum. GrCs fire sparsely in bursts of activity. This layer also contains the terminals of
the first source of input of the cerebellum: the excitatory mossy fibres (MFBs), which originate
mainly from the pontine nuclei. [26]. MFBs synapse directly onto the cerebellar nuclei as well as
onto GrCs. MFBs (and subsequently GrCs) carry sensorimotor information originating from the
whole body and every sensory modality. The granular layer also contains Golgi Cells (GoCs),
very large interneurons which perform both feedback and feedforward inhibition onto the GrC
dendrites and axons, respectively. Finally, this layer also comprises a few other rarer cell types
not considered in this work (such as Lugaro cells, chandelier cells, and unipolar brush cells, which
are found selectively in some folia).

The Purkinje cell layer consists of a single sheet of Purkinje cell (PkC) bodies. As mentioned
earlier, they project onto the cerebellar nuclei and thus constitute the sole output of the cerebellar
cortex. These are among the largest neurons found in vertebrates, characterised by a dense,
intricate and elaborate dendritic arbour which extends into the molecular layer [26]. PkCs are
the main hub of the cerebellar cortex, collecting a myriad of information from about 150,000
GrCs each, in a phenomenal example of convergent input.

The second input of the cerebellum, the excitatory climbing fibres (CF), originate from the
inferior olive and make a very strong contact on each PkC - in the adult brain [33], each PkC
receives inputs from a single CF. They carry a feedback signal teaching the PkCs which subsets
of GrC inputs matter: the respective timing of CFs and GrCs rules the synaptic weight updates
between GrCs and PkCs [34]. Importantly, CFs and GrCs elicit different types of action poten-
tials in PkCs: while GrC inputs modulate the spontaneous firing of PkCs (called simple spikes),
CFs input elicit a massive depolarisation in the whole PkC dendrite, termed complex spike. PkC
simple and complex spikes thus reflect the firing of PkCs and CFs, respectively.

The molecular layer is an important processing layer of the cerebellar cortex. It is where
the PkC dendritic arbours receive both their GrC and CF inputs. They cover extensive regions
of space in the anterior-posterior direction but do not spread far in the medial-lateral direction
(in other words, they roughly cover a 2D plane in 3D space). The GrC axons run always par-
allel to the folia, the highly convoluted folds on the surface of the cerebellum, in a mediolateral
direction. Thus each GrC axon, running perpendicular to the PkC dendritic arbours, has the
potential to synapse onto a large number of Purkinje neurons (Figure 2.1A) [26]. The molecular
layer also contains the eponymous inhibitory molecular layer interneurons (MLIs), subdivided
into the basket and stellate cells. They constitute a functional syncytium, electrically coupled
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with each other in the sagittal plane [35], and exert feedforward inhibition between the GrC
axons and the PkCs.

It is yet unclear where the predictions about bodily and external events are generated: learn-
ing occurs both at the GrC-PkC and the MFB-cerebellar nuclei synapses, and internal models
could be stored and used to generate predictions in either of these places [36].

In summary, the diverse cerebellar cortical cell types relay rather different signals and perform
very specific types of computations (see figure 2.1B): it is thus crucial to be able to identify them
in a given neural recording to enable us to study cerebellar function at all.

2.1.3 Key signals in cerebellar processing

To recapitulate, there are several main signals and/or cell types to be distinguished for a satis-
factory understanding of cerebellar processing:

• Purkinje cell complex spikes (PkC cs for our classifier), elicited by climbing fibre inputs,
which represent the teaching signal for PkCs.

• Purkinje cell simple spikes (PkC ss for our classifier), which represent the output of PkCs,
main hub of the cerebellar cortex, and are modulated by GrC inputs.

• Golgi cells (GoC for our classifier), which perform feedback and feedforward inhibition onto
GrC dendrites and axons, respectively.

• Molecular layer interneurons (MLI for our classifier), which perform feedforward inhibition
between GrCs and PkCs.

• Mossy fibres (MFB for our classifier), which are the second major source of cerebellar input.

• Granule cells’ activity (GrC for our classifier), which multiplex MFB activity and relay it
to PkCs, GoCs and MLIs.

2.2 Neuronal electrophysiology

Neurons are excitable cells that communicate with one another in terms of action potentials (also
referred to as “spikes”), “the signals by which the brain receives, analyzes, and conveys informa-
tion” [26]. Spikes are highly stereotyped, and the information they convey less determined by
the shape of the signal than it is by the pathway they travel in, their frequency, and their timing
relative to external events. Even if it does not primarily communicate coding information for
the neurons themselves, the shape of action potentials differs considerably among various types
of neurons [37]. This can be seen under various recording conditions, including extracellular
recordings in vivo [37], and will be one source of information to build our classifier system, along
with the temporal characteristics of a neuron’s spike train. In order to understand the challenges
in classifying cell types from neuronal recordings, we need to appreciate some fundamentals of
electrophysiology.

The membrane voltage, or potential, at any given time, is defined as the difference between
the intracellular and the extracellular potential. In essence, a spike is a quick series of voltage
changes across the neuronal cell membrane, which is actively propagated by ions flowing in and
out of the cell following a series of fixed phases (Figure 2.2B).

Extracellular recordings in electrophysiology are used to record action potentials through
currents that are induced to flow in the extracellular space around an active neuron (Figure
2.2C; [38]).

Volume conductor theory offers a simple method for understanding these current flows. This
method imagines the extracellular media around the neuron as a “volume conductor”, which has
a low uniform Ohmic resistivity ρ. Under these circumstances, the electrical potential in the
extracellular space is governed by Laplace’s equation [14, 39]:

∇2Φ = 0, (2.1)
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where Φ is the extracellular potential. At the boundaries, (1/ρ)Φ = Jm, where Jm is the
transmembrane current density and ρ is the extracellular resistivity [39]. The issue of point
charges in free space from classical physics (Coulomb’s law) has a counterpart solution for a
single point source of amplitude I in an unbounded isotropic volume conductor [14, 39], which
we can express as

Φ =
ρI

4πr
,

where I is a point source of current and r is the distance from the source to the measurement.
In biological neurons, however, the matter is more complex as membrane currents are dispersed
along extended cylindrical processes, whose length is far greater than their width [39].

One may picture a single axon (the output, threadlike part of the neuron that usually conducts
impulses away from the cell body) in a saline solution as the most basic scenario. The membrane
potential is constant along the length of the axon while it is at rest, and no current is flowing
within or outside the cell [38].

The potential difference between the depolarized and resting areas will, however, cause cur-
rent to flow if the axon becomes depolarized somewhere along the membrane. A current “sink”
is the term used to describe the active area [38]. Biologically, this corresponds to the flow of
Na+ ions into the cell, which depolarise the membrane and at the same time go missing in
the extracellular space. The depolarization then spreads axially along the axon to neighbouring
membrane sections, where capacitive and Ohmic membrane currents serve as a “source” of cur-
rent for the extracellular space. An electrode that is close to the axonal membrane will record
this as a negative deflection, because current flows inward at the active area. A distant electrode
will be almost indifferent to the local change.

Mathematically, this can be expressed by the more involved line source approximation (LSA;
[14]), which, for a single linear current source (e.g. an axon) of length ∆s, gives the potential
Φ(r, h) as

Φ(r, h) = (ρ/4π)

∫ 0

−∆s

I ds/∆s
√
r2 + (h− s)2

= (ρI/4π∆s) log
∣∣∣[√h2 + r2 − h

]
/
[√

l2 + r2 − l
]∣∣∣ ,

where h is the longitudinal distance from the end of the line, r is the radial distance from the
line, and l = ∆s+ h is the distance from the start of the line [39]. As a spike propagates along
an axon, different parts of it go from being current sources to sinks, constituting an evolving
current dipole which is what ultimately allows extracellular recordings.

Importantly, if we now move away from our idealised “single axon in a saline solution”
scenario, and consider that each neurite is modelled by its own LSA, we can appreciate how
extracellular spikes will have different shapes depending on the placement of the recording elec-
trode relative to the neural cell body, dendrites and axon (Figure 2.2A), as these will influence
the size and magnitude of the dipole.

Moreover, it should now also be clear how the size and morphology of the neurons (i.e. their
cell types) also directly influence the current flow around the cell during an action potential [40].
A spike in a tiny cell, for example, will create a smaller total transmembrane current, resulting
in a lower extracellular current. Furthermore, cells with extended dendritic trees will generate
currents across a larger area than cells with short or thin dendrites.

The above considerations, combined with the fact that current dipoles produce an extracel-
lular signal that decreases as the squared inverse distance to the dipole [40] directly imply that
recording from small cells is doubly difficult because their current sources and sinks are both
smaller and closer to one another. This has a two-fold practical implication for smaller cell types,
such as Granule cells. On the one hand, they will express - on average - more distinctive features
in their waveforms across space, such as higher spatial decay of the extracellular peak amplitude
(i.e. they will be recorded on less channels). On the other hand, this also means that they will
be under-represented in the dataset given the operative difficulties in recording them.

To conclude, consider that for explanatory purposes thus far we have considered the extremely
simplified case where we record from a single cell, even if modelled by multiple LSAs. In reality,
an electrode placed in the extracellular medium will likely be close to more than one neuron, with
possible relative arrangements being uncountable, further complicating the recording landscape.
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Figure 2.2: A. Simulated position-dependent extracellular spike waveforms during an action
potential in a rat L5b pyramidal-cell model. Black dots are the (putative, virtual) electrode
contact points. B. Somatic membrane potential as would have been recorded by an intracellular
patch electrode at the point denoted by a star in A. C. Corresponding event to B but recorded
extracellularly. Dotted lines indicate temporal alignment. Note how the voltage in C on the y
axis is also dependent on r, the position of the electrode relative to the cell body, often unknown.
Original figure and adapted caption from [41].

Nonetheless, thanks to the condition in equation 2.1, and the purely Ohmic resistivity of the
extracellular milieu, multiple current sources combine linearly [14, 39], meaning that discerning
different signal sources is “only” a matter of linear source separation. This is what allows “spike
sorting” (Section 2.2.1).

2.2.1 Modern techniques in electrophysiology

Techniques to record the activity of neurons in the extracellular medium have seen tremendous
developments in the last 50 years. The first tungsten microelectrode to record from single neurons
extracellularly was developed only in 1957 [42] to satisfy practical requirements unmet by the
glass microelectrodes for intracellular recordings, such as the possibility to record chronically in
unrestrained animals.

Today, modern silicon probes such as Neuropixels 1.0 and 2.0 [5, 6], which are the technolo-
gies adopted in our research, can record from hundreds of neurons simultaneously.

Neuropixels probes (Figure 2.3) are high-density electrodes with 960 recording sites dis-
tributed on the probe shank, which can record extracellular activity at a high frequency (30 kHz)
from 384 channels simultaneously over about 4mm of brain tissue [5]. A considerable advantage
of the probe design is the possibility of recording from different cortical layers simultaneously,
a particularly attractive feature in cerebellar recordings due to the stereotypical nature of the
cerebellar circuit. However, given the small size of the contacts (12×12µm) and their associated
low impedance, Neuropixels probes capture signals that have high noise on single channels. Yet,
the fact that each cell is often recorded across multiple channels on the probe offers redundant
information that is used to recover the signal-to-noise ratio and identify action potential events.

A question however needs addressing: how does one interpret data coming from high-density
recordings of potentially hundreds of cells simultaneously? Surely it is not as straightforward
as interpreting recordings from a single extracellular electrode? Indeed, raw recordings from
modern probes look almost like meaningless noise if not carefully pre-processed. An essential
step in the pre-processing pipeline, which will also be a prerequisite for our classification task, is
spike sorting.

Spike sorting

Spike sorting (Figure 2.4) is defined as “the grouping of spikes into clusters based on the similarity
of their shapes” [7]. Relying on the rather mild assumption that each neuron will tend to fire
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Figure 2.3: Neuropixels 1.0 and 2.0 probes. A. Schematic of the probe tip illustrating the
characteristic checkerboard layout of the recording sites (dark squares). B. Scanning electron
microscope view of the probe tip. C. Illustration of the full device packaging, including cable
and headstage for data transmission. D. Comparison between Neuropixels 1.0 and 2.0. The
latter have four shanks, a smaller headstage, a more compact channel arrangement and allow
attaching two probes to a single headstage. E. Example of three spike-sorted waveforms recorded
in overlapping channels with 2.0 probes in the olfactory cortex of an awake, head-fixed mouse.
Mean waveforms (in colour) are overlayed on 50 random individual traces. Figures and captions
adapted from [5, 6].

spikes of a characteristic shape, spike sorting software retrieves the activity of putative neurons
(sometimes referred to as “units”) based on spike clusters with a similar shape through a process
of template matching. The sorting process is an essential step of all extracellular recordings,
even if acquired with single electrodes, given that more than a single cell is likely to be in the
vicinity of a given electrode at any time [43]. However, the sorting process becomes even more
essential and technically difficult in high-density, multi-channel recordings.

Spike sorting is indeed a very active area of research [44–47], showing increasing complexity
in the way the newest algorithms attempt to recover unit identities. Some examples include
correcting for probe drift, probe shift, adapting the template over time and using multi-channel
templates.
Building on such efforts, we wish to further extend the amount of information that can be
extracted from multi-electrode recordings with cell type information. In doing so we need to
bear in mind some final considerations on cerebellar electrophysiology.

Figure 2.4: Simplified schematic of the spike sorting process. Traces on the right contain 50
overlapping sorted spikes aligned to their peak. Adapted from [4].
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2.2.2 Distinctive issues in cerebellar electrophysiology

The cerebellum contains the widest range of neuronal sizes in the brain, from small granule cells
to Purkinje cells and Golgi cells [40]. Due to the physical properties of modern electrodes, it is
much easier to record from large cells such as Purkinje and Golgi cells than it is to record from
interneurons and granule cells. Indeed, to record from such small cells, a set of ideal conditions
would need to be satisfied, most notably having a short distance from the probe.

Another issue of cerebellar recordings - which applies also in most brain areas - is the dis-
ruption caused by the electrode. Even if modern electrodes reach microscopic sizes, they are
still at least 3 or four times larger than neuronal cell bodies, and orders of magnitude larger
than dendrites and axons. When a multi-site electrode is inserted in the brain it will therefore
inevitably damage the surrounding neuropil. Due to the peculiarly intricate structure of the
cerebellar cortex, in particular of the molecular layer, it is safe to assume that there will be a
degree of disruption to the local circuit where the electrode is inserted.

Lastly, there are cerebellum-specific precautions to be taken in spike sorting as well, as PkC
complex spikes are for example best found in signals filtered with lower frequency bands than
for other neurons.

2.3 Temporal properties of neurons: spike statistics

As previously acknowledged, action potentials pass on information through their rate and timing.
Calculating spike statistics is thus of paramount importance when characterising the behaviour
of a neuron, and, as a consequence, also when trying to determine its identity. Two statistical
constructs are often used in theoretical neuroscience to summarise the temporal properties of
neurons.

Given a spike train of length n, occurring at times ti for i ∈ [n] := {1, . . . , n} (Figure 2.5A),
the inter-spike interval (ISI) distribution is the probability density of time intervals between
adjacent spikes, and is a valuable statistics for describing spiking patterns [48]. In practice,
this is often represented by the ISI histogram (Figure 2.5B), calculated by taking the difference
between all spike times in a recording and plotting their counts with a chosen bin size.

A generalisation of the ISI distribution is the spike-train autocorrelation function or autocor-
relogram (ACG) which measures the distribution of times between any two spikes in a given spike
train [48]. The ACG is also operatively represented by a histogram (Figure 2.5C) constructed
from the data by selecting both a bin size to divide time and a window size to determine the time
look-back and look-ahead used to consider surrounding events for each spike. So, for the m-th
bin, with m ∈ {−M, . . . ,−1, 1, . . . ,M}, the ACG value for that bin is computed by counting
the number of times any two spikes are separated by a time in the interval (m − 1/2)∆t and
(m+ 1/2)∆t, with ∆t the bin size and 1/2M∆t the window size.
The ACG usually contains more information than the ISI distribution since it reflects temporal
relationships not only between adjacent but between all spikes, and is particularly used in de-
tecting oscillations and regularity in spike trains [48].

Figure 2.5: Schematic of the interspike interval, related histogram and an example spike train
autocorrelation function. A. Schematic of interspike intervals for a train of action potentials. B.
Example interspike interval histogram for a Granule cell in our dataset during the 20 minutes
period of spontaneous activity, calculated with bin size ≈ 0.2 ms. C. Corresponding autocorrel-
ogram, calculated with a bin size of 0.2 ms and a window size of 160 ms. Dotted lines indicate
the refractory period.
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Having exhausted all of the Neuroscience-related background material needed to understand
our exploration, we are now ready to move onto the Machine Learning concepts that guided and
motivated our experiments.

2.4 Introduction to Semi-Supervised Learning 1

Usually, two different types of tasks are discerned in Machine Learning, based on whether the
data at hand is annotated (“labelled”) or not.

In Unsupervised Learning, data is not labelled: the learning algorithm receives observations
D = {x1, . . . ,xn}, where feature vectors xi ∈ X with i ∈ [n] := {1, . . . , n} are typically assumed
to be independent and identically distributed (i.i.d.) samples of some distribution X . The goal
here is to identify the structure in the data, describe its patterns and potentially retrieve a
tractable estimate of the probability density X .

In Supervised Learning, the data is labelled: the learner receives a training set of examples
D = {(x1, y1), . . . , (xn, yn)}, where feature xi ∈ X and label yi ∈ Y pairs are i.i.d. samples from
X ×Y. The goal is to infer a function fD(xi) ≈ yi that approximates the mapping from X to Y
in the data generating process.

Semi-supervised learning (SSL) can be considered the middle point between supervised and
unsupervised learning: the data is partially labelled. In the typical SSL scenario, the learner has
access to observations D divided into Dl = {x1, . . . ,xl} for which targets Yl = {y1, . . . , yl} are
provided, and Du = {xl+1, . . . ,xl+u} for which labels are unknown, with |Du| ≫ |Dl| in most
applications. Generally, the goal of SSL algorithms is to use the unlabeled dataset Du to obtain
a function fD(xi) ≈ yi which is more precise than it would have been if we had only used Dl for
training [50].
However, based on their specific aim, SSL algorithms can be further divided into two sub-
categories.

In transductive learning the aim is to use the trained classifier2 at test time to infer the classes
of the unlabeled instances observed during training. Formally, we only want to learn a function
f : X l+u 7→ Y l+u that is expected to be a good predictor of the unlabeled data {xj}l+u

j=l+1 [49].
In contrast, inductive learning has the goal of outputting a prediction function which can general-
ize to unseen instances from X at test time. Formally, this means we want to estimate a function
f : X 7→ Y to be a reliable predictor beyond already observed unlabelled points {xj}l+u

j=l+1 [49].
While many of the historic SSL methods focus on transductive learning [17], modern Deep SSL
methods focus more on the difficult task of inductive learning [50], and will be at the centre of
our discussion in subsequent sections.

2.4.1 Motivating Semi-Supervised Learning

Before delving into the details of SSL methods, it is worth stopping to briefly consider why SSL
is such a valuable framework in a variety of tasks, including the one we are dealing with.

The most abundant and cheap type of data in the real world is unlabeled data, and the main
reason for this is that getting labels is expensive. It could be expensive time-wise, meaning that
annotators need to spend long periods of time going through unlabelled instances to create a
supervised training set, or because the labelling process itself involves long procedures. It could
also be expensive in a monetary sense, for instance, because annotators need to be experts,
or more trivially to incentivise what would be an otherwise tedious and unappealing task. In
the case of cell-type classification, labelled data is expensive even beyond these reasons, because,
as we will see in section 4.1, labelling neurons involves time and resource-consuming experiments.

1Most of the content of this section is heavily based on [17] and [49]
2Though SSL is also applicable to some regression problems, from here on we will always assume to be in a

classification scenario, as it is the most common and active area of SSL development.
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To conclude this concise reflection, it should come as no surprise that in many tasks we would
want to leverage the power and abundance of unlabeled data over labelled data. The issue is
that this is not always straightforward, as a number of assumptions need to hold for SSL to work
as intended.

2.4.2 Assumptions

• Smoothness Assumption “If two points that reside in a high-density region are close,
then so should be their corresponding outputs” [17, 50]. This also directly implies that if
two points are separated by a low-density region, then their outputs should not be close.

• Cluster Assumption “If two or more points are in the same cluster, they are likely to be
of the same class” [17, 50]. Perhaps this is the most natural assumption, given that in any
classification problem, almost by definition, classes are likely to cluster together. A direct
implication of this assumption is that any decision boundary should lie in a low-density
region.

• Manifold Assumption “High dimensional data should lie (roughly) on a low dimensional
manifold” [17, 50]. When this holds, algorithms can deal more easily with the “curse of
dimensionality”, ensuring more accurate density estimations and more reliable distance
metrics.

Most SSL algorithms either directly or indirectly rely on one or more of these assumptions. Even
if they may look relatively innocent, not all tasks will necessarily follow them, a crucial point we
will keep in mind when interpreting our results.

Let us now continue this background discussion with some recent research directions in SSL.

2.5 Deep Semi-Supervised methods

In the last decade, an increasing amount of research in the Deep Learning community has been
devoted to SSL [50]. Efforts have been broadly directed into different approaches:

• Consistency regularisation, where models are trained to give consistent predictions on dif-
ferent, realistic, perturbations of unlabeled data points.

• Proxy-label methods, where the trained model on the labelled set is used on the unlabeled
set to produce additional labels for subsequent runs, in a form of bootstrapping.

• Generative models, used to learn feature representations on labelled and unlabelled data,
which can then be transferred to other tasks.

• Graph-based methods, similar to more traditional methods such as spectral clustering [51],
where data points are considered as nodes on a graph, and the label information is propa-
gated to unlabeled nodes using specific similarity metrics.

Of direct interest to us will be the first three techniques, which we will now survey in a bit
more detail.

2.5.1 Generative models and representation learning

Unlike discriminative models, which only aim to learn the most accurate predictor given the
data (i.e. P (Y |X = x) ), generative models deal with the more general task of learning a joint
distribution over all the variables [52] (i.e. recovering the distribution P (X,Y ) which is most
likely to have generated the data).
Due to its inherently probabilistic nature, generative modelling is often more computationally
expensive than discriminative modelling and often relies on approximations to surmount ana-
lytically intractable operations. Nonetheless, generative models have also many advantages over
discriminative models, with the most interesting one being perhaps the ability to do representa-
tion learning. Irrespective of the task at hand, a common goal of most scientific pursuits is to
identify “disentangled, semantically meaningful, statistically independent and causal factors of
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variation in data” [52]. This is precisely what representation learning seeks, motivated by the
fact that the performance of machine learning algorithms is powerfully reliant on the choice of
features (representations of data) they are applied on [53].
Strictly speaking, representation learning methods are not explicit SSL techniques. However, in
situations when labels are scarce and dimensionality of data high, these methods offer a pow-
erful way to learn compact descriptions of the data from unlabelled instances that can then be
transferred onto downstream tasks.

The most common models employed for the purpose of representation learning are Variational
Autoencoders (VAEs), a class of Deep Neural Networks under constant innovation and refinement
in the ML community due to their versatility and performance [52].

Variational Autoencoders 3

The framework of VAEs (first appeared in [55, 56]) offers a principled approach for learning
deep latent-variable models and accompanying inference models simultaneously with stochastic
gradient descent.
A deep latent variable model is one where the marginal distribution of the data x is modelled by
deep network parameters θ through auxiliary, latent variables z, introduced to explain the data
generation process, such that:

pθ(x) =

∫
pθ(x, z)dz. (2.2)

Commonly, deep latent variable models have the following factorisation

pθ(x, z) = pθ(z)pθ(x|z), (2.3)

which allows specifying a prior distribution over z, our auxiliary variable, influencing the learnt
representations. The problem with deep latent variable models which VAEs set to solve is that
the integral in 2.2 does not have an analytical solution nor an efficient estimator [52]. Note that

this directly implies that the posterior pθ(z|x) = pθ(x,z)
pθ(x)

, which expresses the learnt representa-

tions, is also intractable.

To mitigate these intractability issues, the VAE framework introduces an inference model
qϕ(z|x) which is also a neural network, called an encoder, specified by variational parameters ϕ
such that it is an approximation to the intractable posterior pθ(z|x). To see how this works and
is achieved in practice, let us derive the objective function for the VAE.
The parameters of the inference network are found by minimising the difference between the
approximate distribution qϕ(z|x) and pθ(z|x). This is represented by the KL divergence

DKL (qϕ(z|x)∥pθ(z|x)) =
∫

qϕ(z|x) log
qϕ(z|x)
pθ(z|x)

dz, (2.4)

which, if we isolate the marginal likelihood term, gives:

DKL (qϕ(z|x)∥pθ(z|x)) =
∫

qϕ(z|x) log
qϕ(z|x)
pθ(z|x)

dz

=

∫
qϕ(z|x) log

pθ(x)qϕ(z|x)
pθ(x, z)

dz

=

∫
qϕ(z|x) log

qϕ(z|x)
pθ(x, z)

dz+

∫
qϕ(z|x) log pθ(x)dz

= −Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
︸ ︷︷ ︸

ELBO, L(x;ϕ,θ)

+ log pθ(x). (2.5)

Re-arranging 2.5 gives the central relationship:

log pθ (x) = L (x;ϕ, θ) +DKL (qϕ (z|x) ∥pθ (z|x)) , (2.6)

3Most of the derivations in this section are adapted from [54] and are expressed for single data points even
where subscripts are omitted for cluttering purposes. For most models, the relation between “per-datapoint” and
“per-dataset” terms is rather direct.
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where the Evidence Lower Bound (ELBO, sometimes also referred to as Variational Free Energy)
is defined as:

L (x;ϕ, θ) = Eqϕ(z|x)

[
log

pθ (x, z)

qϕ (z|x)

]
. (2.7)

A crucial consideration is that due to the, by definition, non-negativity of the KL Divergence,
the ELBO is a lower bound on the exact marginal likelihood of the data:

L (x;ϕ, θ) = log pθ(x)−DKL (qϕ(z|x)∥pθ(z|x)) (2.8)

≤ log pθ(x). (2.9)

Therefore, to find a maximum likelihood solution for θ, we can maximise the ELBO with
respect to θ and ϕ as a surrogate for the log marginal likelihood.
Interestingly, this achieves two purposes at once [52]:

• Approximately maximises the marginal distribution, making the generative model pθ(x, z)
better

• Minimises the KL term, therefore bringing our inference model qϕ(z|x) close to the true
posterior pθ(z|x), improving the quality of the learnt representations.

The graphical model (see [57]) of the VAE framework is presented in Figure 2.6. Details of
stochastic gradient-based optimisation of the ELBO will be omitted for brevity, but the interested
reader is referred to [52] and the appendix of [55] for an exact derivation. What we will do instead
is concisely consider a couple of extensions of the VAE framework of direct use to our work.

x

z θϕ

N

Figure 2.6: VAE graphical model. Solid lines represent the generative model pθ(x|z)pθ(z),
while dashed lines denote the inference model qϕ(z|x). Reproduced from [55].

The β-VAE

Expanding the definition of the ELBO in 2.7, we can note it decomposes in two terms:

L(x;ϕ, θ) = Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
= Eqϕ(z|x) [log pθ(x|z)]︸ ︷︷ ︸

reconstruction term

−DKL (qϕ(z|x)∥p(z))︸ ︷︷ ︸
regularization term

. (2.10)

The first term determines how well the reconstructions are going to be, whereas the second term
indicates how far the decoder is from the prior on the latent variable, penalising taking data
points far away from it. In the β-VAE framework an additional hyperparameter β is added to
the regularisation term of the ELBO, to obtain the following modified objective:

L(x, β;ϕ, θ) = Eqϕ(z|x) [log pθ(x|z)]− βDKL (qϕ(z|x)∥p(z)) . (2.11)

The increased pressure on the posterior to match the factorised prior imposes more limits
on the capacity of the latent bottleneck, as well as additional pressures for it to be factorised
while still being able to reconstruct the data [58, 59]. In practical terms, this modified objective
achieves more disentangled learnt representations. A disentangled representation is one in which
single latent units are sensitive to changes in single generative factors while being generally
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insensitive to changes in other factors [53, 58]. Having close to factorised representations is a
very desirable property for representation learning systems, and of critical help when building
downstream applications with the learned features. It must also be noted, however, that higher
values of β used to encourage disentangling can cause a reduction in reconstruction quality as
information needs to pass through a more constrained capacity latent bottleneck [59, 60].

To summarise, there always exists a value of β > 1 that provides greater disentanglement
but produces a higher reconstruction error than a standard VAE [60]. This need not be an issue
if we are not interested in the quality of reconstructions, as it will indeed not be the case in our
application.

Semi-Supervised Variational Autoencoders

The second and last variation to the VAE framework we are going to consider is the semi-
supervised variational autoencoder (SSVAE) introduced in [61]. The idea behind the SSVAE is
to extend the standard VAE generative model to also account for a latent, discrete, class variable
y in addition to the continuous auxiliary variable z, to have:

p(y) = Cat(y | π); p(z) = N (z | 0, I); pθ(x | y, z) = f(x; y, z,θ).

This amounts to splitting the inference network (the encoder in the classical VAE frame-
work, reported below as M1 for comparison) into two models (M2), comprising together a semi-
supervised inference model for z and y, factorised as qϕ(z, y | x) = qϕ(z | x)qϕ(y | x). These are
a latent-feature discriminative model for z (as in the standard VAE), and a latent-class discrim-
inative model for y, capturing class-specific information [61]. In the case of a Gaussian latent
space, we would therefore have:

M1: qϕ(z | x) = N
(
z | µϕ(x),diag

(
σ2
ϕ(x)

))
; (2.12)

M2: qϕ(z | y,x) = N
(
z | µϕ(y,x),diag

(
σ2
ϕ(x)

))
; qϕ(y | x) = Cat (y | πϕ(x)) , (2.13)

where σϕ(x),µϕ(x),πϕ(x) are respectively a mean vector, a vector of standard deviations and a
probability vector, all represented as neural networks (commonly simple Multi-Layer Perceptrons,
MLPs). Importantly, the network πϕ(x) can be extracted and used to build a classifier after
training.
M1 and M2 (i.e. the classical unsupervised VAE inference network and the semi-supervised
inference model) can be combined for better outcomes, and result in a generative model with
two layers of stochastic variables [61]:

pθ(x, y, z1, z2) = p(y)p(z2)pθ(z1|y, z2)pθ(x|z1). (2.14)

In this case, first M1 is trained ignoring label information to obtain the latent z1, then M2 can
use these as data representations instead of the raw x.

The complete graphical model for the SSVAE (M2) can be found in figure 2.7. The derivation
of the semi-supervised ELBO objective is not trivial and omitted for brevity but can be found
in [61].

2.5.2 Consistency training and pseudo-labelling

The second broad class of Deep Semi-Supervised methods we are going to consider rely on con-
sistency training and pseudo-labelling.

As already hinted, consistency regularisation, or consistency training, uses unlabelled data
to enforce the cluster assumption, i.e. pushes the model towards outputting similar predictions
when fed an instance and its perturbed version [63, 64]. Concretely, given an unlabelled point
x ∈ Du, a classifier pθ(y|·) and a weak transformation α(·), the goal of consistency training is
to minimise some form of distance between pθ(y|x) and pθ(y|α(x)). The most popular distance
measure is the mean squared error, so that, with C classes, the consistency regularisation loss
for a data-point would be:

dMSE (pθ(y|x), pθ(y|α(x))) =
1

C

C∑
k=1

(pθ(y|xk)− pθ(y|α(xk)))
2
. (2.15)
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Figure 2.7: SSVAE graphical model for M labeled and N unlabeled data points. Dashed lines
connect nodes and parameters of the recognition (or inference) model, solid lines of the generative
model. Shaded nodes indicate observed variables, blank nodes latent variables. Adapted from
[62].

Pseudo-labelling, on the other hand, has the objective of generating proxy labels to bootstrap
the learning process [50, 65]. Specifically, pseudo-labelling only retains artificial labels whose
largest class probability outputted by the model is above a predefined threshold τ , according to
the loss function:

1 (max (pθ(y|x)) ≥ τ)H (arg max(pθ(y|α(x))), pθ(y|x)) , (2.16)

where 1 is the indicator function and H(p, q) is the cross-entropy between two probability distri-
butions p and q.

FixMatch

FixMatch [66] is a simple yet powerful SSL approach which combines the ideas of consistency
regularisation and pseudo-labelling to outperform more complex deep SSL architectures [67–
69]. A diagram of the algorithm is presented in figure 2.8. The algorithm uses two forms of data
augmentations, weak augmentations α(·) and strong augmentations A(·). In image classification,
the former are simple transformations such as random flips or shifts, and the latter are based on
more complex transformations such as those provided by RandAugment [70]. In our application,
these will be data augmentations specifically engineered to be biologically plausible. Precisely,
given a batch B of labelled instances and µB unlabelled instances, FixMatch combines two
cross-entropy terms:

ℓs =
1

B

B∑
b=1

H
(
yb, pθ

(
y | α

(
xl
b

)))
; (2.17)

ℓu =
1

µB

µB∑
b=1

1 (max (pθ(y|α(xu
b ))) ≥ τ)H (arg max(pθ(y|α(xu

b ))), pθ (y | A (xu
b ))) , (2.18)

where we used superscripts to denote when a point is l labelled or u unlabelled, with τ being
a scalar threshold hyperparameter above which the pseudo-label is retained [66]. The total loss
minimised is then simply:

ℓ = ℓs + λuℓu, (2.19)

with λu a scalar hyperparameter denoting the weight of the unlabelled loss.
Putting everything together, FixMatch first obtains an artificial label by computing the class

distribution from a weakly-transformed sample. Then, it uses the argmax of that as a pseudo-
label, enforcing through a second cross-entropy term that this will be the same as the model’s
output for a strongly-augmented version of that same sample. Despite its seeming simplicity,
FixMatch obtains state-of-the-art results in most SSL benchmarks [66] and is compatible with
modern Bayesian techniques for improved uncertainty quantification [71, 72].
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Figure 2.8: FixMatch diagram. The model is fed a weakly enhanced waveform or ACG (top)
to provide predictions (red box). The prediction is changed into a one-hot pseudo-label when the
model gives a probability to any class that is higher than a threshold (dotted line). The model’s
forecast for a strong augmentation of the same waveform or ACG is then calculated (bottom).
A cross-entropy loss is used to train the model so that its prediction on the strongly-augmented
version matches the pseudo-label. Details on the custom augmentations will be in section 4.3.
Adapted from [66].
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Chapter 3

Related work

3.1 Cell type classification

Classifying neurons into different functional, morphological and physiological types has been a
key pursuit in Neuroscience since the dawn of the field [73], given its importance in determining
the function of neural circuits, their development, evolution and role in disease [8]. Notable ex-
amples include work in the retina and cerebral cortex, where efforts in determining cell identities
with a variety of techniques have been and will continue to be central to the success in elucidating
the computations performed by neurons in these areas [8, 74–76].

Great efforts within electrophysiology, and recently naturally also within the sub-field of
high-density recordings [16], have been devoted to discerning neuronal identities in extracellular
recordings ([77, 78] for some early examples). Usually, this does not have to do with specific cell
types, but with the distinction of different populations according to some clustering technique
[79]. It is in fact very common for researchers using extracellular probes to be interested in the
activity of two or more different populations known to be in the anatomical area of the recording
[80, 81].
However, we are interested in specifically recovering the identity of the neuron being recorded,
a vastly more problematic task with some precedents in the cerebellum, albeit mostly with the
use of intracellular recording techniques.

3.1.1 Past work in the cerebellum

With some early attempts [82], work towards cell type classification in the cerebellum has seen
rising interest in the last 10 years. Nonetheless, for a variety of reasons which we will now assess,
past work will not be directly relevant to many aspects of our exploration.

Ruigrok and colleagues [11] present a first comprehensive attempt at classifying interneurons
in the cerebellar cortex using juxtacellularly labelled [83] ground-truth units. Follow-up work by
the same group [13] included also Purkinje cells in the classification process. However, sadly, both
studies have substantial flaws in their machine learning component. They use a high-variance
model (i.e. a decision tree), but do not take any steps to make sure they are not overfitting to
the training set. They do not tune hyperparameters, do not perform cross-validation and do
not test on a held-out dataset. Unsurprisingly, their results failed to be reproduced by other
investigators [12, 84].

Van Dijck et al. [12] trained a Gaussian Process Classifier to identify all major cell types
in the cerebellar cortex (PkC, GoC, MFB, MLI and GrC) using only temporal features of the
neurons (see next section), with ground-truth labels still obtained via juxtacellular labelling [83].
They also reported remarkably high accuracies, yet they properly validate their results with
cross-validation strategies and test sets from independent laboratories.
One drawback of their approach is that it uses different models based on the cerebellar layer in
which the neuron is determined to be (by relying on the identification of Purkinje cells complex
spikes), making it not trivially generalisable to multi-channel recordings which would frequently
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record from more than one folium of the cerebellar cortex at the time.

Haar and colleagues [84] did not try to classify cerebellar neurons directly, but acquired
ground-truth data (still through juxtacellular labelling methods [83]) to determine if morpholog-
ically identified cell types could be clustered through unsupervised methods. Their conclusion
is negative, but a number of flaws can be identified in their approach which detracts from their
results. First, it is unclear why they decided to cluster distances between inter-spike interval
distributions, and did not provide a baseline with commonly used features in the literature.
Secondly, they do not take into consideration the shape of the extracellular action potentials,
which are now widely acknowledged to contain critical information for cell type classification
[16, 81]. Thirdly, they acknowledge explicitly that the measures they use are not metrics in the
mathematical sense but then do not demonstrate satisfactorily that they corrected for this in
subsequent analyses, nor offered a comparison with true distance metrics. Further, they make
a strong linearity assumption in the type of methods used and do not explore any nonlinear
techniques. Finally, they do not try to fit a classifier to their ground-truth data and base their
conclusions only on inspection of clustering results.

To conclude, let us note two major reasons why all past studies just surveyed are of little
direct use when tackling our problem.

First, in all instances, recordings were acquired from anaesthetised animals. Given that the
cerebellum is an area highly involved in motor control, the activity over time of cerebellar neurons
under anaesthesia is known to be very different from that in awake, freely behaving animals [85].
Additionally, on the more practical side, if an experimenter is interested in determining cell types
in a behavioural task, it will be completely unrealistic to first put the mouse under anaesthesia,
let it recover, and then do the task, just to be able to accurately determine the identities of the
neurons recorded.

Finally, most laboratories in systems neuroscience now use modern electrode arrays which
yield neuronal waveforms distributed over several recording channels. Previous studies all used
single electrodes, which yield 1-dimensional waveforms. However, the spatial footprint of neu-
rons likely contains relevant information to determine their cell type [16, 80, 81]. For example,
the amplitude crossed with the spatial decay of a waveform reflects the size of the neuron it
originates from. For this reason, we took particular care to extract information from the full
spatio-temporal extent of neuronal waveforms in our representation learning experiments.

Ultimately, what we are after is an algorithm that can work on data from freely moving mice,
with cell identities computed during spontaneous activity periods, and recorded on high-density
electrodes. A classifier with outstanding performance on computed metrics but no practical use
is not a good classifier at all.

3.2 Feature Engineering for neuron classification

In spite of the questionable direct applicability of past models to our problem, years of research
attempting the classification and clustering of cortical neurons from both extracellular and intra-
cellular recordings have converged on a number of high-quality engineered features to describe
neural data. These can be broadly divided into two categories.

Temporal features describe the firing behaviour of the neuron over time and are usually calcu-
lated from the inter-spike interval histogram (Figure 2.5). Temporal features have proven to be
the most effective in neuron classification in a variety of studies [12, 13] and have the advantage
of being blind to the type of probe being used, as they are calculated after the spike sorting
process, a universal step in all extracellular recordings. The most complete formulation of the
temporal features to be used in neuronal classification is used and summarised by [12], and will
also be adopted in our models.

Waveform features describe the shape of the recorded action potential signal. The exact
form of the extracellular waveform is closely tied to the type of electrode used, representing
the principal obstacle to the generalisation of models that use waveform features. Despite this,
waveform features usually add to the capacity of models so there have been valuable attempts
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at parameterising waveform characteristics in the literature, mostly on single-channel traces. In
recent years, with the advent of high-density, multi-site recordings, the formulation of features
that take into account the spatial footprint of the waveform across probe channels has become
pressing, with some novel studies trying to address the issue [16, 80, 81], which we will take as
the baseline in our modelling.

What seems to be lacking altogether from the literature on neuronal cell type classification is
a move past engineered features or an attempt at guiding the feature engineering process through
machine learning methods.

3.3 Past efforts in the Häusser lab

The cell types classification project has been an ongoing endeavour in the Häusser lab for around
3 years. During this time, the data collection, pre-processing and curation pipeline has been
improved through constant monitoring of experimental results. Compared to the solidity of the
experimental paradigm for data collection and curation, machine learning attempts at classifying
cerebellar cell types in the lab are more recent.

Previous work in the Hausser lab established that engineered features for neuron classification
routinely used in the literature can prove valuable when classifying cerebellar cell types from
Neuropixels recordings. However, it was concluded that waveform-based features were not adding
value to the classification process.

At the beginning of the current investigation, different flaws were found specifically in the
Machine Learning pipeline for cell-type classification:

• The feature engineering process to extract information from multi-dimensional waveforms
was not robust to all the possible configurations in which an action potential can be observed
in extracellular recordings. This caused the feature extraction process to fail in some
instances.

• Test-set leakage was discovered in the trained models, inflating reported performances.
Specifically, oversampling techniques such as SMOTE [86] were applied before splitting the
dataset.

• Reported results were relative to cross-validation performance, given that data was too
limited to create a meaningful test set, but different runs were not satisfactorily averaged
to avoid overestimating accuracies.

• Unlabelled data was not considered a potential asset to the classification task, despite its
abundance.

• Machine Learning models going beyond engineered features have also not been regarded
as potential resources to tackle the problem.

These points will all be addressed this dissertation.
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Chapter 4

Methods and Experiments

4.1 The data

The data acquisition paradigm for this project has been consolidated in the Häusser lab in
the past three years. It involves exquisite experimental manipulations, the details of which
would deserve a treatise of their own and are thus well beyond the scope of this dissertation.
Accordingly, our discussion will be limited to those aspects of the data that are essential in
understanding the problem and its attempted solutions.

4.1.1 Optotagging

Ground-truth labels for the cell types of interest are obtained through optotagging (first termed,
rather verbosely, Photostimulation-assisted Identification of Neuronal Populations in [87]). The
procedure involves expressing the ion channel channelrhodopsin-2 (ChR2) in specific neuronal
subpopulations. Channelrhodopsins are nonspecific cation channels that depolarize when ex-
posed to blue light. These light-gated ion channels were identified from Chlamydomona green
microalgae [88], where they control photo-taxis behaviour. A brief flash of blue light causes a
reliable, short latency action potential in ChR2-tagged neurons, making them identifiable elec-
trophysiologically in vivo. Getting reliable and specific genetic expression of ChR2 only in certain
neuronal subpopulations is a nontrivial task, and involves careful engineering of transgenic mouse
lines. The details and references for the expression used for our dataset are summarised in fig-
ure 4.1, and benefit from active research in optogenetics [89], a framework now at the core of
state-of-the-art neuroscience.

Cell type Mouse line
Reference for
cerebellar expression

Purkinje cells
Pcp2-Cre (Jdhu) x
Ai32 (Cre-dep ChR2)

Witter & Regehr (2016) [90]

MLIs Nos1-Cre x Ai32 Jelitai & Duguid (2016) [91]
Granule cells Math1-Cre x Ai32 Wagner & Luo (2017) [30]
Golgi cells Glyt2-Cre x Ai32 Gurnani & Silver (2021) [92]
Mossy fibers Thy1-ChR2 Hull & Regehr (2012) [93]

Figure 4.1: Details of the mouse lines used in optogenetics manipulations.

4.1.2 Experimental protocol

To ensure that optotagging works as expected, it is not sufficient to deliver light stimulation
and include as ground truths all the neurons that respond within a short window of the stimu-
lation. Due to fast monosynaptic and polysynaptic connections highly present in the cerebellar
cortex, optical responses need to be compared before and after application of synaptic blockers
that target all the major ionotropic receptors. This way, if fast responses persist after drug
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application, they can only be caused by the light. One exception to this, however, is off-target
expression of ChR2 (i.e. in undesired neuronal cell types). To quantify and adjust for it, histo-
logical analyses of the neural tissue around the site of recording are performed post-hoc, guided
by the fact that all electrodes are coated with DiI (a common fluorescent dye for cell membranes).

Details of the experimental paradigm for data acquisition are summarised in figure 4.2. Note
how the presence of a period of spontaneous activity, used to compute the temporal and waveform
features, is an integral part of the protocol.

Figure 4.2: Schematic of the optotagging experimental protocol for data acquisition. Adapted
from internal presentation.

4.1.3 Data curation and pre-processing

After data acquisition, extensive curation and pre-processing steps go into the creation of the
final dataset.

First, spike sorting is run with kilosort [47], followed by manual curation of the sorting output
through Phy [46]. At this point the responses to the light of candidate units 1 pre- and post-drugs
are assessed, and if there is any evidence of drug efficacy at that depth in the recording (seen as
the suppression of synaptic connections observed pre-drug), the unit under examination is called
responsive, and included as a candidate neuron in the dataset.

Secondly, all candidate units undergo a series of pre-processing steps to accentuate their
salient features. Specifically, spike-sorted waveforms are averaged across high-amplitude portions
of the recording and de-noised, to yield a single, high-quality waveform for that neuron. In the
process, corrections for averaging artefacts such as drift-matching and shift-matching are applied
through the open-source package npyx [23].

Finally, before inclusion in the dataset, candidate units undergo a series of quality checks
that ensure the spikes found through spike-sorting and manual curation are within certain false-
positive and false-negative thresholds, where false positives are clustering errors (i.e. spikes of
multiple units clustered into one) and false negatives are missed spikes (as seen by a clipping
in the distribution of recorded spike amplitudes over time). As a consequence, the remaining
units all consist of spike trains extensively checked for correct attribution to a single neuron, and
average waveforms obtained through specialised de-noising mechanisms.

4.1.4 The final cerebellum dataset

The cerebellum dataset for cell types classification, obtained with the methods summarised above,
consists of 77 labelled ground-truth neurons (divided into 25 GoC, 21 PkC ss, 11 PkC cs, 9 MFB,
6 GrC and 5 MLI ), along with 877 high-quality unlabelled units.

1As a reminder, clusters of neural activity found after the spike sorting process are called units. Ideally, they
coincide with neurons, and we are in fact often calling them neurons when referring to units in the final dataset
which underwent several stages of quality checks.
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Though this may seem like a remarkably small dataset, the reader is encouraged to consider
the enormous amount of work that went into gathering this data, which is the fundamental mo-
tivator of our need for efficient SSL algorithms: the dataset is extracted from ≈ 150 experiments
run on ≈ 140 mice over the course of 3 years by more than 4 different experimentalists. Even
if often the animals used in these experiments were also taking part in other investigations, the
sheer magnitude of these figures is impressive.

Each neuron in the dataset is represented by a tuple
(
xspk t
i ,Xwvf

i

)
consisting of a variable-

length array of spike times xspk t, indicating the time at which a spike occurred in the 20 min
period of spontaneous activity, and a 10×60 (n channels×samples) matrix Xwvf of waveforms
across probe channels in space.

For some models, however, each datapoint is represented by a different tuple,
(
xACG
i ,Xwvf

i

)
,

where Xwvf still represents the waveform i in space, and xACG is a 100-dimensional vector
representing the autocorrelogram (see 2.3 and 2.5) for neuron i, calculated with a bin size of 1
ms and a window size of 200 ms.

A visualisation of some labelled examples in the dataset is presented in figure 4.3.

Figure 4.3: Sample waveforms and autocorrelograms of one neuron for each cell type in the
dataset. For compactness of representation, only 8 out of the 10 waveforms in Xwvf are plotted.

4.1.5 Dealing with low and imbalanced data

The cerebellum dataset is rather different from the usual machine learning benchmark dataset.
The overall number of instances in the dataset is not strikingly high (though it is in a Neuro-
science setting), and the number of labelled data is even more problematic. Moreover, there
is a great deal of class imbalance in the few ground-truth labels that are present, a situation
particularly common in Neuroscience [94]. In dealing with such a troublesome dataset, a number
of noteworthy steps were taken to ensure the data was used to its full potential in every model.

1. Stratified cross-validation was always used in hyperparameter tuning unless otherwise spec-
ified.
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2. Random oversampling of the under-represented classes was performed for every model after
cross-validation splits, using the open-source package imblearn2.

3. Given the fundamental lack of labelled data we are facing in this project, a proper test
set could not be created to quantify generalisation in a customary way. As a result, the
performance of all models proposed is always expressed in terms of leave-one-out cross-
validation (LOOCV). While we acknowledge this may lead to overly confident performance
estimates, it must also be noted that the LOOCV is a nearly unbiased estimator of the
generalisation error [95], with variance comparable to other cross-validation methods [96],
and has been used in low-data settings similar as ours [12].

4. To overcome potential issues with the variance of LOOCV and avoid reporting cherry-
picked performances due to chance, results are always reported by averaging random runs
of LOOCV with different random seeds.

4.2 Baseline models

As detailed in section 3.1.1 and 3.2, past work in cerebellar cell types classification is not directly
applicable to our problem, with the exception of the feature engineering process. However, there
are no priors on the importance of each feature that can be derived from previous efforts, given
the different recording conditions and the probe types used.

As a consequence, a necessary part of our investigation was the development and reproduction
of a few baseline models previously adopted in the Häusser lab.

4.2.1 Human experts

The only significant prior that could be used to inform our pursuit comes from the expert opinion
of experienced electrophysiologists. However, should we use this type of information? Most
electrophysiologists gain experience and insight into the typical behaviour of different cell types
by working with intracellular recording methods. However, as we already discussed, extracellular
recordings with high-density probes such as Neuropixels generate data that is far more complex
and hard to interpret without the aid of software tools and extensive pre-processing. It can thus
be argued that, given the novelty of the task and the technology adopted, expert opinion may
bias the discovery process by enforcing priors which have not been proven to directly transfer
across recording conditions.

Nevertheless, gathering expert opinions can be insightful in establishing a baseline for Machine
Learning models to improve upon and also measure the practical significance of our efforts. For
these reasons, we developed a web application 3 that allows expert electrophysiologists to predict
the labels of ground truth cell types in our dataset. This survey-like application was distributed
to three electrophysiologists in the lab who ranged from 4 to 8 years of experience working with
both intracellular and extracellular recording methods. Their average performance is reported in
table 4.1, along with the performance of a weighted majority classifier constructed by weighting
their opinions according to individual accuracies.

4.2.2 Feature extraction

A natural baseline for many machine learning tasks is to construct a simple model with engineered
features. Fortunately, the literature on cerebellar classification [12] and cell type clustering from
Neuropixels recordings [16, 80] offers an established set of both temporal and waveform features
to extract from extracellular recordings.

Some words of caution must be voiced on the process at this point. While temporal features
are entirely dependent on the events found by the spike sorting process and are in theory robust
to the type of probe being used, waveform features need to be treated with special care. Since
the shape of the waveform and its spread across channels can vary due to a large number of
factors (including probe type, distance to the probe, morphology of the cell and more. Refer
back to figure 2.2), there are some practical decisions to be made when extracting waveform

2https://imbalanced-learn.org/stable/
3Which is accessible here.
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features from extracellular recordings. For example, one could decide to only extract features
from waveforms on the peak channel, irrespective of their shape. Or, alternatively, to only extract
features from the peak channel when they have a certain, common shape (i.e. a somatic spike)
which is well amenable to feature calculation. Or, again, one may decide to fit a dipole model to
the waveform in space and extract features from the modelled waveform, limiting the variation
across waveforms.

However, all of the methods mentioned have a key limitation: they have failure cases. If we
always extract from the peak channel, we will inevitably find different types of spikes on it (i.e.
somatic, dendritic or axonal), introducing unwanted variation. If we always extract only somatic
spikes, there may be types of neurons for which they are not recorded, yielding unusable neurons
under this method. Likewise, if we want to fit a dipole model, it is necessary that both the source
component and sink component of the waveform are recorded for the same unit across channels,
which is often not the case.

The approach taken before the beginning of this study in the Häusser lab was particularly
lossy as only somatic features from the peak channel were extracted. We addressed this by
modifying the pipeline for waveform features extraction, which now proceeds in different stages.
First, peak detection is run to determine if there are any usable somatic spikes in the trace,
whether they are on the peak channel or not. If any are found, features are calculated from the
highest amplitude one, if not, the highest amplitude non-somatic waveform is flipped in sign and
used to extract the features. This process ensures that the waveform features calculation step
does not fail for any given Xwvf . We call the channel found through this process the relevant
channel, and extract features from it.

Specifically, the following 15 waveform features were extracted from the relevant channel:
peak time, peak voltage, trough time, trough voltage, repolarisation time, depolarisation time,
half peak width, half trough width, onset time, onset amplitude, waveform width, peak-to-trough
ratio, recovery slope, repolarisation slope and depolarisation slope.

Additionally, two features were calculated using information across channels: the spatial
decay of the waveform at 24µm, and the amplitude of the dendritic component.

Furthermore, 11 temporal features were calculated on the ISI histogram (see figure 2.5): me-
dian, mode, entropy, 5th percentile, average and median CV2, CV, local variation, revised local
variation, rescaled cross-correlation and skewness; together with 4 features calculated on the ISI
themselves (mean and mean instantaneous firing rate, instantaneous irregularity and refractory
period duration), this provides a total of 15 temporal features.
Our contribution to the feature extraction process have been included in the open-source elec-
trophysiology package npyx [23].

To obtain a visual summary of the dataset after feature extraction, an interactive dashboard
built in dash4 was developed. The tool allows us to summarise, compare and inspect all the
information in the dataset: the different types of features, both raw and normalised for each
feature type, and detailed plots of the optotagging process that resulted in the inclusion of each
neuron in the dataset. The application is openly accessible at the following website: https:

//files.fededagos.me/features/.

4.2.3 Random Forest

Using the reviewed feature engineering process, a simple Random Forest classifier (RF)5 was
made to serve as a baseline model. To be competitive with successive models, the hyperparame-
ters of the RF were tuned via Bayesian Optimisation [24] through the open-source package optuna
[25], with the average stratified 5-fold cross-validation F1-score as the objective. Specifically, the
following parameters were tuned: {n estimators, criterion, max features, min samples -

leaves}.

Results of 50 different runs, each with different random seeds, of LOOCV (leave-one-out
cross-validation) on random forests using different subsets of features are reported in table 4.1

4https://dash.plotly.com/
5The popular implementation in scikit-learn[97] of the Random Forest classifier was used

(sklearn.ensemble.RandomForestClassifier).
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Model Accuracy F1-score n features
Human Experts 57.3± 6.2 45.9± 6.5 N.A.
Weighted Majority Experts 57.3± 0.0 44.1± 0.0 N.A.
Engineered waveform features + RF 58.4± 5.9 44.1± 3.1 17
Engineered ACG features + RF 59.7± 1.2 51.5± 2.2 15
All engineered features + RF 71.4± 0.5 * 56.8± 3.5 * 32

Table 4.1: Baseline model performances. Values indicate means plus or minus standard de-
viations. Stars indicate the best performances among the ones reported. All results of the RF
models are reported after 50 different runs of LOOCV.

Two things are immediate from these results. First, the human baseline achieves very poor
and variable performance, which does not improve by taking a weighted majority vote of the
responses. Second, the best baseline is the one that uses all available engineered features from the
literature. This is in contrast with some previous results internal to the lab and demonstrates the
added benefit of including waveform features with our novel, generalised, approach to computing
them.

4.3 Data augmentation strategies

Central to the deep learning approaches tried in our further experiments was the development of
custom data augmentation strategies for the cerebellum dataset. Given the extremely low data
setting we are in, it was essential to come up with augmentations that would mimic the natural
variability found in the data and extend the labelled data pool to regularise highly expressive
models such as deep networks. Past work has repeatedly shown how, when plausible transfor-
mations are known, augmentations in data space are highly superior to synthetic oversampling
in feature space [98, 99] in reducing overfitting and models’ generalisation capabilities. This is
true even in expert domains [100], and for a variety of Deep Learning architectures [101, 102].

In practice, we built a total of 8 custom data augmentations, 4 specific to the waveforms, 4
specific to the spike trains and 2 usable on both. These are, for the waveforms:

1. SwapChannels: swaps the indices of even and odd channels in Xwvf , mimicking the bio-
logical scenario in which the probe was oriented in the same way along the longitudinal
axis but in the opposite way along the dorsoventral axis.

2. VerticalReflection: reverses the indices of the channels of Xwvf , mimicking the scenario
in which the probe was oriented in the same way along the dorsoventral axis but in the
opposite way along the longitudinal axis.

3. DeleteChannels: deletes n channels at random fromXwvf , simulating a corrupted record-
ing from one or more channels.

4. PermuteChannels: permutes n channels at random in the waveform. This is not a bio-
logical transformation and is only used for strong augmentations in FixMatch.

For the ACGs or spike trains:

1. DeleteSpikes: each spike in the train is deleted with probability deletion prob. Simu-
lates a scenario in which the neuron was firing more sparsely.

2. MoveSpikes: jitters each spike a quantity max shift. Introduces plausible variability in
the spike train recordings.

3. AddSpikes: adds a random number of spikes max addition · len(spike train), simulat-
ing an increase in firing rate.

4. NewWindowACG: re-calculates the ACG from the spike train by multiplying both the window
size and bin size by magnitude change. Slightly changes the way the ACG vector is
represented, analogously to cropping or re-scaling an image.

And the more generic:
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1. GaussianNoise: Adds Gaussian noise to both Xwvf and xACG, with independent standard
deviations σwvf and σACG both multiplied by a parameter eps multiplier

2. ConstantShift: Randomly compresses or expands the signal by a given scalar amount
scalar which multiplies both Xwvf and xACG.

A visual summary of most custom transformations is presented in figure 4.4.

Figure 4.4: Examples of our custom data augmentations for the waveforms and autocorrelo-
grams. GaussianNoise and Constantshift are not included here as they are more trivial and
not specific to the cerebellum dataset.

Furthermore, a custom wrapper inspired by RandAugment [70] was built on top of the aug-
mentations to be used with FixMatch [66], such that random combinations of augmentations of
different magnitudes could be applied to any datapoint at training time.

4.4 Representation learning

The first major contribution of this work to the cell types classification problem comes through
representation learning techniques. The cerebellum dataset contains 10× more unlabelled than
labelled data points, with the potential of increasing the unlabelled pool even more, as it can
be collected through much simpler experiments. Moreover, no existing methods in the litera-
ture extract features extensively from the waveforms in space, nor from the autocorrelogram (a
much richer source of information than the ISI histogram). To resolve such issues, while still
retaining the possibility of using engineered features familiar to electrophysiologists in modelling,
we decided to train Variational Autoencoders (VAEs) on all data to extract a low-dimensional,
compressed and mathematically close to optimal representation of the data (see section 2.5.1).

Specifically, two separate VAEs were trained on the unlabelled data, one to learn represen-
tations from Xwvf , the waveform in space, and one to extract information from xACG. In both
cases, encoder and decoder networks were symmetrical Multi-Layer Perceptrons (MLPs), the
architecture of which was chosen through Bayesian Optimisation. The optimisation objective
was the 5-fold cross-validation accuracy of a Random Forest (RF) classifier trained using the
latent space encoding as features, along with either temporal features (for the waveform VAE) or
waveform features (for the ACG VAE). Almost all the hyperparameters of the MLP were chosen
through Bayesian optimisation [24], and included: {batch size, n layers, learning rate,

n units layer, dropout, optimizer, d latent, beta}. Note how we also hyper-optimised
over the dimensionality of the latent space (d latent), and over the coefficient beta determining
the pressure put on disentanglement of the latent space.

Results of Bayesian Optimisation over the hyperparameters show how higher values of β (i.e.
β = 4.63), corresponding to more disentangled representations, are able to drive better results
on downstream models for the waveform VAE. In contrast, the best value for β for the ACG
VAE was found to be 1, i.e. the traditional ELBO objective, suggesting how disentanglement
may help on a case-by-case basis. Additionally, more latent dimensions were found to be optimal
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in compressing the data for the ACG VAE (14) compared to the waveform VAE (10). Further
details about the models’ architectures are available in Appendix A.

To ensure our trained VAEs were indeed capturing variance as expected, we investigated the
structure of the latent spaces by transforming linearly spaced coordinates on the unit square
through the inverse cumulative density function of a Gaussian (given that the prior on our latent
space was chosen to be Gaussian) to produce a range of values for the latent variable z (following
[55]). However, given that our latent spaces are more than two-dimensional, we actually plot a
2D cross-section of them by transforming those points with the matrix constructed with the first
two right singular vectors of the mean latent spaces (which are found by passing all the data
through the encoder networks).

The results displayed in figure 4.5 clearly show that our VAEs are working as expected. For
example, we can note how the vast majority of the latent space for the waveform VAE is occupied
by variations of somatic waveforms (top right of 4.5A), which are indeed the most common in
the dataset. However, all other typical spike shapes are also represented, including dendritic
waveforms (bottom-left of 4.5A), and both bi-phasic and tri-phasic axonal waveforms (along
the diagonal of 4.5A). The same is true for the ACG latent space, which captures anything
from bursting activity (top-left 4.5B) to high refractory periods (middle-right 4.5B), oscillations
(middle-bottom 4.5B), and both high and low firing rates.

Figure 4.5: Latent space interpolations from our waveform and ACG VAEs trained on the
cerebellum dataset. A. 2D projection of the 10D latent space learnt by our β-VAE trained
by reconstructing the waveforms across channels Xwvf . For the sake of visualisation, only the
waveform on the peak channel is plotted here. B. 2D projection of the 14D latent space learnt
by our standard VAE trained on ACGs xACG.

Having established the expressiveness of the learnt representations, we use the encoder net-
works from the trained VAEs to compute features to employ in random forest classifiers, which
we evaluate again through LOOCV. Results are presented in table 4.2, and clearly demonstrate
the positive impact on performance of the representation learning approach. When compared
with the baseline, VAE-driven models reach comparable or better levels of accuracy and overall
better F1 scores with a reduced number of features. Reducing the number of features used while
retaining or improving model performance is especially important in low data regimes where we
want to avoid over-specifying the classification problem to help with generalisation, as it is easier
to overfit to idiosyncrasies with fewer instances [103].

Notably, VAE waveform features are the ones making the higher impact on the problem,
proving how feature engineering approaches are still not successful at extracting all available in-
formation from the waveform (in particular its spatial footprint). On the other hand, somewhat
surprisingly, the learned ACG features are only a small improvement over the engineered tem-
poral features, corroborating a general consensus in the literature on the robustness of temporal
features extracted from the ISI histogram.
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Model Accuracy F1-score n features
All engineered features + RF (best baseline) 71.4± 0.5 56.8± 3.5 32
VAE wvf + engineered temporal features + RF 71.1± 0.9 63.8± 3.5 25
VAE ACG + engineered waveform features + RF 72.7± 0.6* 58.2± 2.6 31
VAE wvf + VAE ACG + RF 72.7± 0.9* 64.8± 3.4* 24

Table 4.2: Performance of Random Forest classifiers trained with different combinations of
features, either learned through VAEs or engineered.

On the whole, the representation learning approach resulted fruitful, and, as expected, con-
veniently complementary to feature engineering, while also diminishing the imbalance present in
the models towards the majority classes (as demonstrated through the F1 scores).

While learning representations has the advantage of granting compatibility with any down-
stream model or other sources of features, it is also possibly not leveraging at its fullest the
potential of contemporary semi-supervised methods and is still tied to non-deep models to pro-
vide the predictions.

Inspired by the fact that the best-performing model so far is using only features coming from
Variational Autoencoders, we expand our exploration first towards explicitly semi-supervised
extensions of the VAE framework, and secondly to more general deep semi-supervised methods
from the literature [66].

4.5 Deep semi-supervised learning

4.5.1 The semi-supervised Variational Autoencoder

VAEs, as we have seen, are excellent tools to learn rich representations of data in a completely
unsupervised manner. However, certain features of the data often covary in a specific way with
different classes. Ideally, we would want to provide some partial class information to transform
the feature space, so that it can learn to separate inter-class variance from intra-category vari-
abilities and model group membership in a more complete and robust way. This is expressly the
objective of the semi-supervised VAE (SSVAE, [61]; see section 2.5.1).

Our SSVAE (model M2 in [61], see 2.5.1) was trained using only 4 labels per class, in order to
be able to evaluate it through leave-one-out cross-validation (as only 5 labels were available for
the MLIs). To partly compensate for this, all our custom data augmentations were used during
training.

To encode and classify neurons with the same architecture, we needed to unify the latent
space for waveforms and autocorrelograms. The simplest way to achieve this was to change the

representation of our data from a tuple
(
xACG
i ,Xwvf

i

)
to a single vector, concatenating the two

sources of information.
Once more, the specific architecture of the SSVAE was discovered through Bayesian Optimisa-

tion [24], using the accuracy on a held-out validation set as the objective. The range of hyperpa-
rameters tuned this way included: {learning rate, n layers autoencoder, n layers clas-

sifier, batch size, non linearity, n units, optimizer, d latent}. Again, the quality
of reconstructions for the discovered architecture was inspected to ensure we did not incur in
posterior collapse [104], especially since we changed our representation of the data and used a
modified version of the ELBO objective [61].

Following hyperparameter optimisation, the final architecture was tested on 11 runs of leave-
one-out cross-validation using different random seeds that changed the labels used for each class
during training and the initialisation of all networks. Practically, the procedure included first
training the SSVAE on all unlabelled data and 24 labelled instances (4 per class) drawn at
random from all but one the labelled data points. Then, after training, the classifier network of
the SSVAE was used to predict the held-out labelled datapoint. Table 4.3 shows the results of
this procedure compared with the performance of previous models.

First of all, it should be stressed how, with only a fraction of the labels of other models, the
SSVAE is able to attain comparable performance to the previous best models, if not better when
compared to the baseline.
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Model Accuracy F1-score n features n labels
All engineered features + RF 71.4± 0.5 56.8± 3.5 32 77
VAE wvf + VAE ACG + RF 72.7± 0.9 64.8± 3.4 24 77
Semi-Supervised VAE 69.3± 9.7 65.4± 7.8 700 24

Table 4.3: Comparison of the SSVAE performance with previous best performing models. Note
the difference in the number of labels used

Secondly, however, we need to acknowledge the greater variance exhibited by the SSVAE
between LOOCV trials, which likely comes from multiple sources. The first and most important
source of variance is the subset of labels used to train each model. Given that we randomly
choose the 4 labelled instances for each class to use in different runs, how representative of its
class each example is, and the variance it represents, greatly influences the performance of the
model, as has been demonstrated with other SSL methods [66]. The second probable major
source of variance is the random initialisation of the different networks. Given known issues with
the stability of the ELBO objective during training [105, 106], it is possible that different initial-
isations, interacting with the variance in label information, might have caused the optimisation
procedure to reach, at times, suboptimal solutions.

Overall, results for the SSVAE look satisfactory and promising, with the important caveat
that to obtain the best performance from the model the labelled examples need to be chosen to
ensure a certain degree of representativeness.

4.5.2 FixMatch

Despite the potential shown by the SSVAE, its reliance on a rather unstable training objective and
its rather complicated probabilistic formulation might put off end users. Seeking an alternative
highly reliable, simple to understand and hyperparameter-light approach to SSL, we decided to
adapt the novel FixMatch [66] algorithm to the cerebellum dataset. FixMatch (see section 2.5.2)
is deceptively simple and almost reminiscent of a regularisation procedure, but still leverages the
flexibility of arbitrary Deep Learning architectures to deliver state-of-the-art SSL performance.
In our case, we used a simple MLP.

First, we optimised over the parameters of the MLP using Bayesian Optimisation with
the 5-fold cross-validation accuracy as the objective. The hyperparameters optimised were:
{learning rate, n layers, n units}. Then, we used this architecture for the FixMatch train-
ing procedure.

Only 4 labels per class were used once again, for comparison with the SSVAE. The process
involved 64 FixMatch steps per epoch for 32 epochs, giving a total of 2048 FixMatch steps
that were found sufficient to attain convergence. FixMatch-specific hyperparameters such as
the pseudo-label threshold and temperature were kept at the default values found through the
extensive ablation studies by [66].

Regrettably, computational and time constraints did not allow us to benchmark our Fix-
Match architecture using the same leave-one-out cross-validation procedure as the other models.
Nonetheless, table 4.4 reports the validation accuracy and F1-score of 29 Fix-Match model runs
trained with different subsets of ground-truth labels and parameter initialisations.

Model Accuracy F1-score n features n labels
FixMatch MLP 48.5± 9.3 36.8± 7.7 700 24

Table 4.4: Performance of the FixMatch model on the subset of labelled data points not used
during training. Mean and standard deviations of 29 runs.

As the validation fold in FixMatch is not used during training at any time and we do not per-
form any optimisation on the FixMatch-specific hyperparameters, performance on the validation
set could still be considered an adequate proxy of generalisation performance. However, due to
the heavy class imbalance in the dataset, no real conclusion can be drawn at present from these
numbers, and they are only to be considered as a tentative and preliminary evaluation attempt.
Future work is needed to properly evaluate the model.
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4.6 Error Analysis

Looking only at accuracies and F1 scores for the models examined does not let us satisfactorily
evaluate progress, or lack thereof, in our modelling effort. To visually compare the precision and
recall of different classes in the dataset under different model architectures, let us examine the
respective confusion matrices.

Figure 4.6: Confusion matrices for three of our most representative models. From left to right:
random forest model using only engineered features; random forest model using features extracted
with two encoder networks, one for the ACGs and one for the waveforms; classifier network from
a SSVAE. The first two confusion matrices are averaged over 50 LOOCV trials, while the last
is an average of 11 trials. Large numbers at the centres of squares indicate mean values, small
numbers in the corners are standard deviations. All confusion matrices show percentage values
normalised along the prediction axis.

Figure 4.6 clearly demonstrates how the performance of the feature engineering baseline is
strongly determined by the model only learning the majority classes (i.e. GoC, PkC ss, and
PkC cs), while having very poor performance for all other classes. Using the VAE features
compensates for this, achieving a greater deal of class balance in the predictions, with relatively
low expenses for the majority classes. However, the SSVAE is perhaps the one achieving a more
balanced classification outcome, this time penalising performance on the majority classes.

These figures make sense in light of the fact that the SSVAE has access only to balanced labels
during training, and cannot skew the classification performance towards the majority classes if
they are not in fact easier to separate.

To further break down and understand the similarities, differences and vulnerabilities of
different models, and grasp why some of the majority classes might be penalised in more complex
models, it is instructive to look at the most misclassified examples during LOOCV for each
algorithm in figure 4.7. They confirm what is already a common denominator in the confusion
matrices, which is that most mistakes are either false positive or false negative identifications of
Golgi cells.

A possible explanation for this is off-target genetic expression of ChR2 (most commonly in
Purkinje cells), which is known to be an important confound in optotagging experiments. It
can often be resolved via post-hoc histology, although this is not always performed after data
acquisition. At present, it is not possible for us to determine if Golgi cells are either naturally
more variable than other cells, or simply have a few corrupt labels due to off-target expression.
Judging by the impact on our classifiers, this should be a priority to be investigated in future
work.
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Figure 4.7: Top 3 most common mistakes for each class of models evaluated with LOOCV.
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Chapter 5

Discussion and Conclusion

Cell types classification from high-density extracellular recordings in vivo is a highly non-trivial
task, with no reliable solutions in the literature. As we have shown, even expert electrophys-
iologists fail at showing reliable performance in classifying units, manifesting how developing
machine learning models to solve the issue can not only result in time-saving tools but in the
resolution of a hard, ill-specified problem.

Results of our experiments revealed how, as expected, deep semi-supervised methods can
be valuable assets in tackling the cell types classification problem. On the one hand, we have
shown how using variational autoencoders to produce rich representations of data can improve
the performance of models relying on more traditional, literature-grounded, engineered features.
On the other hand, we also demonstrated how, using far fewer labels than traditional models,
end-to-end deep SSL methods can be of great promise for the task, albeit at the cost of more
complex interpretability for researchers having to adopt such a tool out of the box.

Let us now briefly evaluate the impact of our findings in relation to our initial objectives
and the broader literature on cell types classification, including some forward directions that will
bring our models to distribution.

5.1 Reassessment of research aims

Our first explicit aim was to improve methods that could work with feature engineering ap-
proaches so that researchers could work with familiar and understandable constructs while also
harnessing the power of machine learning methods. Through our VAEs, we have shown how
learnt representation can be used side-by-side with more traditional features to improve the per-
formance of downstream models. Importantly, we also demonstrated how those representations
indeed capture most of the variance that an electrophysiologist would see in real data (Figure
4.5). In following this first line of research, we have also established how human experts reach
poor performance in the task, confirming our initial doubts about the use of expert-derived priors.

Our second aim of completely abandoning feature engineering approaches in favour of deep
semi-supervised methods was also particularly fruitful, setting the stage for future research. The
SSVAE model rivalled the performance of our representation learning approaches using only a
fraction of all the labels used by other models. Not only that, but it did also show more balance
in the predictions.

Moreover, the custom data augmentations and wrappers for deep models that we developed
can be readily used in all forthcoming explorations, and serve as an inspiration for other deep
learning tasks using Neuropixels data. This will also be directly explored in future work, where
the FixMatch model will be repeatedly run to yield meaningful evaluation metrics.

Compared to previous studies in the literature on cell types classification [11–13, 84], the
results presented here might look underwhelming at first. However, quite the opposite is the
case.

First of all, it should be stressed that there is no precedent in the literature at successfully
tackling cell types classification with high-density probes, especially using data coming from
awake mice.
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Second, unlike some previous studies [11, 13], here we followed a clear machine learning
pipeline, taking all necessary precautions to avoid reporting inflated results.

Third, the methods introduced allow us to use labelled data with unprecedented efficiency in
the field. As a result, each new data point coming from the complicated optotagging experiments
can be used to drive meaningful improvements in the models, lowering overall ground-truth data
requirements and saving both time and resources. This can serve of inspiration for future work,
outside of the specific models and architectures proposed here.

Finally, it should be noted that while we benchmarked architectures, we did not settle on
a single, final, model for the task. This is a venture left for future work, as new data is being
acquired in the Häusser lab at the time of writing.

5.2 Future outlook

A few steps still need to be taken before our research can result in a model to be deployed and
used by research laboratories working with Neuropixels around the world.

At present, new recordings are undergoing the pre-processing steps to yield novel ground-
truth units for under-represented classes in the cerebellum dataset. Moreover, further unlabelled
data is also undergoing manual curation to be included in the dataset. Having established the
capabilities of the semi-supervised approach, it is clear how adding more unlabeled data can also
be of great help during modelling, especially since some small cells, like GrCs and MLIs, will
always be naturally under-represented given the experimental difficulties in recording them.

A further pressing direction for future research regarding the dataset is the careful reexam-
ination of the Golgi cell class, to determine if its variability is biological or indeed caused by
unwanted sources of variance like off-target ChR2 expression.

More efforts can also be made in the modelling direction. In the present exploration, all our
deep architectures were limited to simple MLPs. It is conceivable that the growth of the dataset
can be met with the adoption of other architectures, such as convolutional networks, which are
compatible both with the VAE and the FixMatch framework.

Given the successes of the β-VAE in our representation learning experiments, an exciting
avenue for future explorations would be the adoption of the Factor-VAE [60], an extension of the
VAE framework that provides better-disentangled representations without sacrificing the quality
of reconstructions.

Further, considering the outcomes of both the representation learning approach and the SS-
VAE, an exciting future direction to prioritise is to combine those two models following [61] in
a generative model with two layers of stochastic variables (i.e. what they call M1+M2 in the
original study, see section 2.5.1), which has been shown to be superior to both the SSVAE on its
own and representation learning followed by any other downstream model.

Looking towards deployment, it is our intent to adopt Bayesian methods for improved uncer-
tainty calibration. This would amount to using explicitly probabilistic models such as Gaussian
process classifiers in the representation learning setting followed by downstream models. In the
end-to-end deep semi-supervised learning scenario, this will practically mean applying post-hoc
Bayesian approximations to the learned parameters of our networks (for example using Laplace
approximations [71]), therefore retaining performance but gaining better uncertainty estimates.
Giving reliable estimates of model uncertainty is absolutely crucial to the deployment and subse-
quent practical adoption of the model, as researchers need to be equipped with the best possible
information to guide their decision-making. This tool aims to be something onto which further
analyses are solidly built, and as such needs to be as transparent as possible. 1

As a final aside, it should be mentioned that the relevance of the cell types classification
problem is such that an international collaboration is being set up to encourage data sharing
and solve the task in a robust and reproducible way. This will be facilitated by some of the
steps taken in the present study, including the use of our custom dashboard 2 to transparently

1This is also the reason why we release all code, data and optimisation logs from our experiments at https:
//github.com/fededagos/celltypes-classification

2Available at https://files.fededagos.me/features/

36

https://github.com/fededagos/celltypes-classification
https://github.com/fededagos/celltypes-classification
https://files.fededagos.me/features/


summarise and share all relevant aspects of the dataset across laboratories, assisting biologists
in data exploration without requiring them to be fluent in machine learning methods.

5.3 Limitations

As described in section 2.4.2, the adoption of SSL methods is implicitly reliant on a few cardinal
assumptions that must be acknowledged when modelling. But what happens if they do not
hold?
Quite simply, it would imply that SSL methods are bound to fail on this task, either by not
learning any effective decision boundaries or by learning meaningless ones. However, given the
apparent reasonableness of the smoothness, cluster and manifold assumption, a failure of SSL
would also be very informative on the nature and solvability of the task. Having models that are
limited by such assumptions can be a desirable characteristic in low data settings such as ours,
which are more prone to overfitting. Nonetheless, it should be recognised that our explorations
were effectively limited by such hypotheses, which need to be more effectively scrutinised in the
future.

Additional limitations of our explorations are the lack of a proper test set and the incomplete
evaluation of the FixMatch architecture. These will be the object of upcoming work, with the
help of incoming ground-truth data and an increase in time and computational resources.

5.4 Conclusion

The ultimate goal of systems neuroscience is to understand the functions and computations
performed by neural circuits that mediate complex behaviour in living animals. Recent ad-
vancements in electrophysiology equip researchers with tools to record simultaneously from an
unprecedented number of cells, opening new avenues for the description of neural computation. In
this process, an understanding of how different cells integrate, process and transmit information
will be pivotal.

Here we showed how deep semi-supervised learning methods can successfully be applied to
novel datasets trying to tackle cell types classification from high-density cerebellar recordings.
In doing so, we improved the performance over both the human experts baseline and a feature
engineering baseline model, while at the same time showing how data requirements may be
lowered if the potential of unlabelled data is correctly used.

We hope new research will stem from our explorations, leading to the first ever machine
learning model able to satisfactorily classify non-trivial cell types from high-density extracellular
recordings in vivo.
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80. Özcan, O. O. et al. Differential Coding Strategies in Glutamatergic and GABAergic Neu-
rons in the Medial Cerebellar Nucleus. eng. The Journal of Neuroscience: The Official
Journal of the Society for Neuroscience 40, 159–170. issn: 1529-2401 (Jan. 2020) (cit. on
pp. 20–22, 26).

42

http://arxiv.org/abs/1606.04586
http://arxiv.org/abs/2001.07685
http://arxiv.org/abs/1911.09785
http://arxiv.org/abs/1911.09785
http://arxiv.org/abs/1905.02249
http://arxiv.org/abs/1703.01780
http://arxiv.org/abs/1909.13719
http://arxiv.org/abs/1909.13719
http://arxiv.org/abs/2106.14806
http://arxiv.org/abs/2002.10118
http://arxiv.org/abs/2002.10118
https://www.annualreviews.org/doi/10.1146/annurev-neuro-071714-034120
https://www.annualreviews.org/doi/10.1146/annurev-neuro-071714-034120
https://www.nature.com/articles/nn.4216
https://www.pnas.org/doi/abs/10.1073/pnas.91.9.4009
https://www.pnas.org/doi/abs/10.1073/pnas.91.9.4009
https://journals.physiology.org/doi/full/10.1152/jn.01170.2003
https://journals.physiology.org/doi/full/10.1152/jn.01170.2003
https://www.sciencedirect.com/science/article/pii/S0896627321006565
https://www.sciencedirect.com/science/article/pii/S0896627321006565


81. Sibille, J. et al. Strong and specific connections between retinal axon mosaics and midbrain
neurons revealed by large scale paired recordings en. Pages: 2021.09.09.459396 Section:
New Results. Sept. 2021. https://www.biorxiv.org/content/10.1101/2021.09.09.
459396v1 (cit. on pp. 20–22).

82. Huang, C. M., Mu, H. & Hsiao, C. F. Identification of cell types from action potential
waveforms: cerebellar granule cells. eng. Brain Research 619, 313–318. issn: 0006-8993
(Aug. 1993) (cit. on p. 20).

83. Pinault, D. A novel single-cell staining procedure performed in vivo under electrophysi-
ological control: morpho-functional features of juxtacellularly labeled thalamic cells and
other central neurons with biocytin or Neurobiotin. eng. Journal of Neuroscience Methods
65, 113–136. issn: 0165-0270 (Apr. 1996) (cit. on pp. 20, 21).

84. Haar, S., Givon-Mayo, R., Barmack, N. H., Yakhnitsa, V. & Donchin, O. Spontaneous
activity does not predict morphological type in cerebellar interneurons. eng. The Journal
of Neuroscience: The Official Journal of the Society for Neuroscience 35, 1432–1442. issn:
1529-2401 (Jan. 2015) (cit. on pp. 20, 21, 35).

85. Chen, S., Augustine, G. J. & Chadderton, P. Serial processing of kinematic signals by
cerebellar circuitry during voluntary whisking. en. Nature Communications 8. Number: 1
Publisher: Nature Publishing Group, 232. issn: 2041-1723. https://www.nature.com/
articles/s41467-017-00312-1 (Aug. 2017) (cit. on p. 21).

86. Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic Minor-
ity Over-sampling Technique. Journal of Artificial Intelligence Research 16. arXiv:1106.1813
[cs], 321–357. issn: 1076-9757. http://arxiv.org/abs/1106.1813 (June 2002) (cit. on
p. 22).

87. Lima, S. Q., Hromádka, T., Znamenskiy, P. & Zador, A. M. PINP: A New Method of Tag-
ging Neuronal Populations for Identification during In Vivo Electrophysiological Record-
ing. PLoS ONE 4, e6099. issn: 1932-6203. https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2702752/ (July 2009) (cit. on p. 23).

88. Tan, N. G. A., Wu, W. & Seifalian, A. M. en. in Applications of Nanoscience in Pho-
tomedicine (eds Hamblin, M. R. & Avci, P.) 185–203 (Chandos Publishing, Oxford, Jan.
2015). isbn: 978-1-907568-67-1. https://www.sciencedirect.com/science/article/
pii/B9781907568671500101 (cit. on p. 23).

89. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. en. Nature Neu-
roscience 18, 1213–1225. issn: 1546-1726. https://www.nature.com/articles/nn.4091
(Sept. 2015) (cit. on p. 23).

90. Witter, L., Rudolph, S., Pressler, R. T., Lahlaf, S. I. & Regehr, W. G. Purkinje Cell Collat-
erals Enable Output Signals from the Cerebellar Cortex to Feed Back to Purkinje Cells and
Interneurons. en. Neuron 91, 312–319. issn: 0896-6273. https://www.sciencedirect.
com/science/article/pii/S0896627316302483 (July 2016) (cit. on p. 23).

91. Jelitai, M., Puggioni, P., Ishikawa, T., Rinaldi, A. & Duguid, I. Dendritic excitation–inhibition
balance shapes cerebellar output during motor behaviour. en. Nature Communications 7.
Number: 1 Publisher: Nature Publishing Group, 13722. issn: 2041-1723. https://www.
nature.com/articles/ncomms13722 (Dec. 2016) (cit. on p. 23).

92. Gurnani, H. & Silver, R. A. Multidimensional population activity in an electrically coupled
inhibitory circuit in the cerebellar cortex. en. Neuron 109, 1739–1753.e8. issn: 0896-6273.
https://www.sciencedirect.com/science/article/pii/S0896627321001975 (May
2021) (cit. on p. 23).

93. Hull, C. & Regehr, W. G. Identification of an Inhibitory Circuit that Regulates Cere-
bellar Golgi Cell Activity. en. Neuron 73, 149–158. issn: 0896-6273. https : / / www .

sciencedirect.com/science/article/pii/S0896627311009949 (Jan. 2012) (cit. on
p. 23).

94. Thölke, P. et al. Class imbalance should not throw you off balance: Choosing the right
classifiers and performance metrics for brain decoding with imbalanced data en. Aug. 2022.
https://www.biorxiv.org/content/10.1101/2022.07.18.500262v2 (cit. on p. 25).

43

https://www.biorxiv.org/content/10.1101/2021.09.09.459396v1
https://www.biorxiv.org/content/10.1101/2021.09.09.459396v1
https://www.nature.com/articles/s41467-017-00312-1
https://www.nature.com/articles/s41467-017-00312-1
http://arxiv.org/abs/1106.1813
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702752/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702752/
https://www.sciencedirect.com/science/article/pii/B9781907568671500101
https://www.sciencedirect.com/science/article/pii/B9781907568671500101
https://www.nature.com/articles/nn.4091
https://www.sciencedirect.com/science/article/pii/S0896627316302483
https://www.sciencedirect.com/science/article/pii/S0896627316302483
https://www.nature.com/articles/ncomms13722
https://www.nature.com/articles/ncomms13722
https://www.sciencedirect.com/science/article/pii/S0896627321001975
https://www.sciencedirect.com/science/article/pii/S0896627311009949
https://www.sciencedirect.com/science/article/pii/S0896627311009949
https://www.biorxiv.org/content/10.1101/2022.07.18.500262v2


95. Wang, B. & Zou, H. Honest leave-one-out cross-validation for estimating post-tuning gener-
alization error. en. Stat 10. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sta4.413,
e413. issn: 2049-1573. https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.413
(2021) (cit. on p. 26).

96. Zhang, Y. & Yang, Y. Cross-validation for selecting a model selection procedure. en. Jour-
nal of Econometrics 187, 95–112. issn: 0304-4076. https://www.sciencedirect.com/
science/article/pii/S0304407615000305 (July 2015) (cit. on p. 26).

97. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research 12, 2825–2830 (2011) (cit. on p. 27).

98. Wong, S. C., Gatt, A., Stamatescu, V. & McDonnell, M. D. Understanding data augmen-
tation for classification: when to warp? arXiv:1609.08764 [cs]. Nov. 2016. http://arxiv.
org/abs/1609.08764 (cit. on p. 28).

99. Perez, L. &Wang, J. The Effectiveness of Data Augmentation in Image Classification using
Deep Learning arXiv:1712.04621 [cs]. Dec. 2017. http://arxiv.org/abs/1712.04621
(cit. on p. 28).

100. Vasconcelos, C. N. & Vasconcelos, B. N. Convolutional Neural Network Committees for
Melanoma Classification with Classical And Expert Knowledge Based Image Transforms
Data Augmentation Mar. 2017. http://arxiv.org/abs/1702.07025 (cit. on p. 28).

101. Xu, Y. et al. Improved Relation Classification by Deep Recurrent Neural Networks with
Data Augmentation arXiv:1601.03651 [cs]. Oct. 2016. http://arxiv.org/abs/1601.
03651 (cit. on p. 28).

102. Kumar, V., Choudhary, A. & Cho, E. Data Augmentation using Pre-trained Transformer
Models arXiv:2003.02245 [cs]. Jan. 2021. http://arxiv.org/abs/2003.02245 (cit. on
p. 28).

103. Hand, D. J. Classifier Technology and the Illusion of Progress. Statistical Science 21.
Publisher: Institute of Mathematical Statistics, 1–14. issn: 0883-4237, 2168-8745. https:
/ / projecteuclid . org / journals / statistical - science / volume - 21 / issue - 1 /

Classifier-Technology-and-the-Illusion-of-Progress/10.1214/088342306000000060.

full (Feb. 2006) (cit. on p. 30).

104. Lucas, J., Tucker, G., Grosse, R. B. & Norouzi, M. Don’ t Blame the ELBO! A Linear VAE
Perspective on Posterior Collapse in Advances in Neural Information Processing Systems
32 (Curran Associates, Inc., 2019). https://proceedings.neurips.cc/paper/2019/
hash/7e3315fe390974fcf25e44a9445bd821-Abstract.html (cit. on p. 31).

105. Alemi, A. A. et al. Fixing a Broken ELBO arXiv:1711.00464 [cs, stat]. Feb. 2018. http:
//arxiv.org/abs/1711.00464 (cit. on p. 32).

106. Cremer, C., Li, X. & Duvenaud, D. Inference Suboptimality in Variational Autoencoders
arXiv:1801.03558 [cs, stat]. May 2018. http://arxiv.org/abs/1801.03558 (cit. on
p. 32).

107. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library
arXiv:1912.01703 [cs, stat]. Dec. 2019. http://arxiv.org/abs/1912.01703 (cit. on
p. 47).

108. Bingham, E. et al. Pyro: Deep Universal Probabilistic Programming arXiv:1810.09538 [cs,
stat]. Oct. 2018. http://arxiv.org/abs/1810.09538 (cit. on p. 47).

44

https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.413
https://www.sciencedirect.com/science/article/pii/S0304407615000305
https://www.sciencedirect.com/science/article/pii/S0304407615000305
http://arxiv.org/abs/1609.08764
http://arxiv.org/abs/1609.08764
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1702.07025
http://arxiv.org/abs/1601.03651
http://arxiv.org/abs/1601.03651
http://arxiv.org/abs/2003.02245
https://projecteuclid.org/journals/statistical-science/volume-21/issue-1/Classifier-Technology-and-the-Illusion-of-Progress/10.1214/088342306000000060.full
https://projecteuclid.org/journals/statistical-science/volume-21/issue-1/Classifier-Technology-and-the-Illusion-of-Progress/10.1214/088342306000000060.full
https://projecteuclid.org/journals/statistical-science/volume-21/issue-1/Classifier-Technology-and-the-Illusion-of-Progress/10.1214/088342306000000060.full
https://projecteuclid.org/journals/statistical-science/volume-21/issue-1/Classifier-Technology-and-the-Illusion-of-Progress/10.1214/088342306000000060.full
https://proceedings.neurips.cc/paper/2019/hash/7e3315fe390974fcf25e44a9445bd821-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/7e3315fe390974fcf25e44a9445bd821-Abstract.html
http://arxiv.org/abs/1711.00464
http://arxiv.org/abs/1711.00464
http://arxiv.org/abs/1801.03558
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1810.09538


List of Figures

2.1 Organisation of the cerebellar cortex . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Extracellular waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Neuropixels probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Spike sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Spike statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 VAE graphical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 SSVAE graphical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 FixMatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Mouse lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Optotagging protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Dataset visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Custom data augmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Latent space plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Confusion matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Top-3 mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

45



List of Tables

4.1 Baseline models performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 VAE models performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 SSVAE performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 FixMatch performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.1 Machine specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

46



Appendix A

Details on training procedures

Hardware specifications

All code was run on a custom Linux machine running Ubuntu1 20.04 LTS, with the following
specifications:

Specification Details Specification Details
Memory 64 GB OS name Ubuntu 20.04.4 LTS
Processor Intel Core™ i7-6700 CPU @ 3.40GHZ × 8 OS type 64-bit
Graphics NVIDIA Quadro M2000 CUDA version 11.3.1

Table A.1: Relevant specifications for the custom Linux machine on which the experiments
were run.

Python environment

All experiments were run using Python2 version 3.7.13. The virtual environment was managed
with Anaconda3. Details of the packages used and their versions can be found at https://

github.com/fededagos/celltypes-classification/blob/main/environment.yml

All deep models were trained using pytorch4 [107], for the exception of the SSVAE which
was modelled in pyro5 [108].

Model fitting details

Hyperparameters

As mentioned in the main text, hyperparameter tuning was performed via Bayesian optimisation
[24] using the open-source package optuna [25].

Here are the details of the hyperparameters for the different models.

Random Forest

{'criterion': 'entropy',

'max_features': 'log2',

'min_samples_leaf': 3,

'n_estimators': 328}

1https://ubuntu.com/
2https://www.python.org/
3https://www.anaconda.com/
4https://pytorch.org/
5https://pyro.ai/
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Waveform VAE

{'batch_size': 69,

'beta': 4.63,

'd_latent': 10,

'dropout_l0': 0.47,

'lr': 0.00164022900982639,

'n_layers': 1,

'n_units_l0': 86,

'optimizer': 'Adam'}

ACG VAE

{'acg_d_latent': 14,

'acg_dropout_l0': 0.11,

'lr': 0.0037179027062778855,

'acg_n_layers': 1,

'acg_n_units_l0': 166,

'beta_acg': 1.03,

'optimizer': 'Adam'}

SSVAE

{'lr': 0.00496835069560119,

'aux_multiplier': 41,

'batch_size': 15,

'd_latent': 7,

'hidden_units_class_l1': 54,

'hidden_units_l1': 65,

'n_layers_classifier': 1,

'n_layers_vae': 1,

'non_linearity': 'tanh',

'optimizer': 'RMSprop'}

FixMatch

{'dropout_l0': 0.22395782802124392,

'dropout_l1': 0.401563000009004,

'lr': 0.004265516314362439,

'n_layers': 2,

'n_units_l0': 117,

'n_units_l1': 148,

'optimizer': 'RMSprop'}
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Appendix B

Code and data availability

All code, checkpoints for trained deep models and Bayesian optimisation logs needed to replicate
our experiments are released in the celltypes-classification repository at https://github.
com/fededagos/celltypes-classification.

Source code for our custom dashboard to explore the features of the neurons in the dataset
is also openly available at https://github.com/fededagos/features-app.

The cerebellum dataset, is available for download at https://files.fededagos.me/datasets/
cerebellum_dataset.h5. It comes in the hdf51 file format, containing, for each neuron, the
waveform, spike train, label and various metadata related to the optotagging experiments.

In order to efficiently work with the dataset, we created custom functions dealing with data
extraction, cleaning and pre-processing from the raw hdf5 files, which can be found on our
repository under utils/h5 utils.py.

1https://www.hdfgroup.org/solutions/hdf5/
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